

DELIVERABLE D1.1 (v1.2)

Draft of Design Concept of the Cognitive
Vision (CV) Framework

Final Version

2 May 2002

Authors: Kingsley Sage, Jonathan Howell, Hilary Buxton, Markus
Vincze, Wolfgang Ponweiser, Christof Eberst, Antonis Argyros, Gerald

Umgeher, Jiri Matas

Project acronym: ACTIPRET
Project full title: Interpreting and Understanding Activities of
 Expert Operators for Teaching and Education

Action Line IV.2.1: Real Time Distributed Systems (Cognitive Vision)
Contract Number: IST-2001-32184

 Q:\PROJEKTE\ACTIPRET\WP1_Framework\T11_Conception\D1.1\D1-1_Final_V1_2.doc

Contents
1 Introduction .. 4
2 Principles and requirements of Cognitive Vision... 5

2.1 Memory ... 5
2.2 Learning .. 5
2.3 Control .. 6
2.4 Reasoning... 6

3 Cognitive Vision framework .. 8
3.1 Belief values.. 8
3.2 Attention control .. 9
3.3 Learning of behavioural models ...10
3.4 Software framework for Cognitive Vision ..10

3.4.1 Related work ...11
3.4.2 Goals ..12
3.4.3 Design decisions ...12
3.4.4 Design principles...13
3.4.5 Component structure...14
3.4.6 Resource management and service selection ...15
3.4.7 Management of models...17

3.5 Realisation of principles and requirements of Cognitive Vision...............................18
4 ActIPret demonstrator ...20

4.1 How the user interacts with the ActIPret demonstrator ...20
4.1.1 AD functional phases ..20
4.1.2 AD conceptual language ...21
4.1.3 Our approach to building the first AD...22

4.2 AD System Structure..22
4.2.1 Example set-up for expert mode ...23

4.3 Description of components...25
4.3.1 Service list (ACIN)...25
4.3.2 User HMI (COGS) ...25
4.3.3 Activity planner (COGS) ..25
4.3.4 Activity reasoning engine (COGS)...26
4.3.5 Gesture recogniser (COGS)..27
4.3.6 Object relationship generator (ACIN)...27
4.3.7 Service list with view controller (Profactor) ..28
4.3.8 Hand detector and tracker (FORTH) ...28
4.3.9 Object detector and tracker (ACIN) ...29

 2

4.3.10 Object recogniser (CMP)...29
4.3.11 Hand recogniser (FORTH) ..29
4.3.12 Motion detector (FORTH)..29
4.3.13 Ellipse detector (CMP + ACIN) ..30
4.3.14 Image server (camera) (Profactor) ..30
4.3.15 Pose server (Profactor) ...30
4.3.16 CPU controller (Profactor) ...30
4.3.17 Scene modelling for visualisation (CMP) ...30

4.4 Framework tool selection ...30
4.4.1 The tools for the framework...31
4.4.2 Hardware ..33
4.4.3 References..33

 3

1 Introduction
This deliverable document provides the first complete overview of the Cognitive Vision (CV)
framework. It summarises the work thus far under Task 1.1 (Conception and Interface
Definitions). This CV framework is one of the two main deliverables of ActIPret, the second
being the development of purposive processing and interpretation techniques according to
this framework.
Section 2 describes the basic principles and requirements for CV. These principles represent
a generic CV framework and are not limited in scope to ActIPret only.
Section 3 describes the goals, key design decisions and principles for an effective
implementation of the general framework, and presents the basic implementation
components and how they are managed and selected. Finally, we summarise how this
generic CV Framework is intended to realise the challenges presented by the CV approach.
Our goal is that this generic framework can be re-used by the wider cognitive vision
community.
The specific application of the generic framework within ActIPret is described in Section 4.
First the intended operation of the ActIPret Demonstrator (AD) is outlined. Second, we
describe the envisaged components and the component structure of the framework for the
AD. Third, a short description of each component is given. And finally, options for tools to
implement the framework are presented together with an evaluation leading to the selection
of the OSCAR tool.
There are three Appendices to this main document:

�� Appendix A: detailed function specifications for all the components;

�� Appendix B: IDL (Interface Description Language) definitions that specify the
interfaces of each component; and

�� Appendix C: a glossary of terms used within ActIPret.
Three other deliverables are presented contemporaneously with this one. These 3 other
documents describe in more detail work on specific methods to be used within components
of the AD framework:

�� D3.1: describes the methods of establishing relations between one or more objects;

�� D4.1: describes the approach to recognition of objects; and

�� D6.1: describes methods of attentive behaviours.
The interfaces definitions for the components described in D3.1, D4.1 and D6.1 are also in
Appendix B. This appendix will be a working document throughout the project.

 4

2 Principles and requirements of Cognitive Vision
The development of a systematic methodology for the design, implementation and
integration of Cognitive Vision (CV) systems is currently a very important research problem
and has its roots in early proposals for active vision. Cognitive vision is concerned with the
purpose and behaviour of computer vision systems in the context of their goal-oriented
activity (from ECVision). Essential elements of a CV system are:

�� memory: representations of objects, categories, actions, behaviours, etc.;
�� learning: of task relevant representations and how to use them;
�� control: both selective visual processing and active control of viewing geometry; and
�� reasoning: about representations and events/activity for system decisions/actions.

2.1 Memory
A CV system needs to be capable of representing and storing (cf. memory) data about task
relevant objects and behaviours. Such representation schema need to reflect the
requirements of the vision task. Traditional approaches to representation tend to focus on
hand-crafted schema that have little generality outside of their specific application.
Representations for CV applications reflect whether a task is concerned with categorisation
(requiring generalised representations capable of supporting decisions such as “some type of
car”) or recognition and identification (capable of deciding “this particular instance of car”).
Different levels of task abstraction require different types of representation schema and a CV
system needs to be able to choose the most appropriate for any particular task.
Representations may be organised into hierarchical systems such that specific schema can
be derived from more generic ones.
A CV system also needs a consistent method for representing belief. Different pieces of
knowledge may arise from different levels of abstraction of a task, but it is necessary to
combine these into a single coherent interpretation of a scenario. For example, in a scenario
where we are looking for a particular car in a scene (say “blue estate car with a given
registration number”), we may first use a generic level of abstraction to look for a particular
type of class (say “an estate car”). This level of task abstraction (categorisation) returns a
number of different candidates each with a certain level of belief. We might then use a
specific representation to find which member of that candidate set is the specific car we are
interested in. This process involves taking a prior level of belief and revising it on the basis of
a more specific level of task abstraction (identification).

2.2 Learning
A CV system needs to be capable of acquiring and modifying representation schema such as
those described in the previous Section based on experience (training). For ActIPret, this
may take the form of off-line learning (supervised or unsupervised) or through adaptation
(both through reactive planning implemented in the form of task based control structures and
through statistical revision of belief) during run-time. The purpose of learning is to maximise
the representation schema to be maximally task relevant. For example, for a categorisation
task, if we have only ever observed “blue cars” we might suspect that “blueness” is a generic
property of cars. The subsequent existence of a single instance of a “red car” causes us to
revise our categorisation procedure and deduce that “blue” is a specific property that can
apply to a car (relevant for an identification task) but is not a generic property.
Learning in a vision system can be at the level of:

 5

�� object models;
�� their movements and actions (behavioural models); and
�� how to control views and processing in the system.

Objects can be recognised at different levels of abstraction, general categories such as
“face” and “car” or more specific categories such as “estate car” or “familiar face”. At the
most specific level, there is identification where a unique instance such as “my face” or “my
car” is recognised. The learning of behavioural or activity models is concerned with
acquisition of structure for movements and actions. Activity models can be associated, in
general, with “action verbs” such as “grasping”, “picking up” and so on. Activity models can
be constructed in terms of actions, activities and events.
In addition to object and behaviour recognition, expected behaviour can be used to control
further processing in the system through prediction. Many different learning and prediction
techniques have been proposed including, for example, symbolic learning using case based
reasoning, graphical models for probabilistic reasoning and control, stochastic models for
learning and prediction in tracking, deformable models for event analysis and neural network
learning in gesture recognition.

2.3 Control
The ActIPret project focuses on understanding activity in dynamic scenes, which leads us to
expand on the theme of control in that:

�� perception is guided by expectation, i.e. we “see as” in the famous words of Max
Clowes; and

�� this expectation is purposeful, i.e. we “see for” a particular decision or action.
In particular, this means that understanding visual behaviour must take place not only in the
context of what is known about the dynamic scene but also in the context of the observer’s
task. The first implies the use of conceptual knowledge, i.e. hand built or learned models in a
readily accessible form, and the second implies active control of the visual processing, i.e.
selective attention of some kind (overt/covert) for real time processing of dynamic scenes.
In control structure terms, ActIPret is task driven. At the most abstract level, we use rules to
guide our expectation associated with the current vision task. These rules are embodied in
the form of a control policy. At the different levels of the system appropriate knowledge
arising from the control policy will constrain the processing. Our expectations are defined in
the context of the chosen scenario (encapsulated in our conceptual language) so our control
policy can capture this sense of purpose.
In vision terms, ActIPret can be viewed as reactive (bottom up) processing limited in scope
by task driven (top down) control and constrained by task driven knowledge.

2.4 Reasoning
A CV system must be capable of using the knowledge encapsulated using its representation
schema to guide the processing based on expectation (control) and to provide the user with
task relevant explanations of derived inferences.
More specifically, the building of sequences of actions, activities, events and object and
behavioural models using the various representation schema within ActIPret is synonymous
with the synthesis of an activity plan (“activity planning”) for the scenario as demonstrated by
the expert. The scenario is demonstrated to ActIPret as exemplars. These exemplars may

 6

have end-to-end significance or the expert may choose to structure them in a hierarchical
fashion. Where the expert structures the exemplars in a hierarchical fashion, the result is a
hierarchical activity plan with embedded learned sequence models (refer to the paper on
learning of models). Exemplars of the plan are represented in the conceptual language.
The conceptual language in general consists of:

�� the declarative semantics of the task – information about objects referred to during
the description of the task and expected behavioural models for these objects;

�� sequences of plan concept functions (atomic plan primitives) organised as a mixture
of exemplars with end-to-end significance or organised into a hierarchical structure;

�� specific behaviour models for activities, actions or events observed in the exemplars
and derived from abstract models defined within the activity reasoning engine (see
the paper on learning models for more details); and

�� a limited amount of domain specific data, outside the scope of generalised models,
contained in the activity reasoning engine, necessary for the correct interpretation of
the scenario. Examples of such domain knowledge include prior state variables to
represent very specific aspects of the state of functions on a CD player.

 7

3 Cognitive Vision framework
Building on the themes presented in Section 2, we now extend the definitions of the core
functions of cognitive vision, that is the belief values, attention control and learning, for use
within the context of a general Cognitive Vision (CV) framework. We then develop this
general framework into a specific one for an ActIPret demonstrator system in Section 4.

3.1 Belief values
The reasoning engine needs to ensure that service requests to lower components are made
in the most effective manner to facilitate detection and recognition of behavioural patterns.
Any system of reasoning needs a mechanism to measure its belief in the knowledge that it
holds (whether prior or posterior). This mechanism is the belief system and various
underlying models exist to support such belief in a useful and natural manner (for example,
probability theory, Dempster Shafer theory and fuzzy logic). The belief system defines a
system of belief values that can be used to determine truth (whether binary logic e.g. this
predicate is true/false with a given belief, or continuous e.g. this predicate is 70% true / false)
or relevance (e.g. this rule is appropriate to apply in this case),
For example, the ActIPret reasoning engine component models the validity of any plan
hypothesis generated using a probabilistic belief measure. This measure of belief, combined
with information on computational costs and other metrics are used to determine the most
effective order and distribution of visual processing tasks throughout the lower level
components.
For the ActIPret framework overall, the standard measure of belief is a continuous function in
the interval [0,1]. Furthermore, the belief function b for any given hypothesis hi in any of the
system components falls into one of 3 generic bands:

�� 0 � b(hi) < x1 : very low (“irrelevant”). This level represents a minimum threshold for
the component to maintain the hypothesis (for example, as proposed to the reasoning
engine by the object relation generator) and to warrant expenditure of computational
resources in attentive processing. Any hypothesis whose belief function falls beneath
this threshold for any significant period will be removed (garbage collection). Any
processing that was being performed by lower level components in support of that
hypothesis would usually be terminated.

�� x1 � b(hi) < x2 : worth maintaining and investigating further (“promising”). The initial
attainment of a belief value in this level corresponds to the notion of detection. When
a hypothesis emerges with a belief function that exceeds the minimum threshold, we
make service requests of lower level components in order to recover further evidence
that either supports or refutes the hypothesis (increasing or decreasing its belief
function). The type of service requests (in terms of computational costs and quality of
service) will depend on the current utility of the concept for the behavioural task.

�� x2 � b(hi): very high (“confirmed”). This level of belief corresponds to the notion of
recognition. At this point there is sufficient evidence to regard the hypothesis as “true”
(an established concept). This band has a specific further semantics in the case of
the activity reasoning engine where attainment of the band will:

instantiate a concept function ci from hi (i.e. after instantiation, system decision
means concept is treated as fact -no longer has semantics of a belief value);
and/or

��

�� cause a change in the internal state of the reasoning engine (i.e. the concept
represents a causal change in control policy such as “revoke rule X”, action).

 8

Rules within each component define the belief value thresholds x1 and x2 for any given
hypothesis. The values of x1 and x2 may be independent for any given hypothesis function hi,
and could be adaptive.
Belief values may also be eroded as a function of time. This is a useful method for the
garbage collection of tentative hypotheses that were short-term transients but for which it
was not possible to gather further and sufficient evidence.

3.2 Attention control
A key element of the ActIPret CV framework is the notional separation of "pre-attentive" and
"attentive" vision tasks to allow us to focus intensive processing where it is required. This
separation underlines the importance of control and reasoning in selecting the focus of
attention. We have extended the concept of a binary separation of pre-attentive and attentive
vision into a continuum between the two based on measures of computational cost and
quality of service (pre-attentive vision corresponds to low computational cost and potentially
low quality of service, and attentive vision to high computational cost and quality of service).
Attentive processing is then a continuum of visual services. These services are defined in
terms of their computational cost and quality of service. The highest level of control is a
function of the activity reasoning engine. This reasoning engine makes task relevant
decisions about which visual services should be requested. Using notation from Section 3.1,
attentive control for any component arises from the middle band of belief values (x1 � b(hi) <
x2) for any given hypothesis hi. The control mechanism is a functional loop within a
component that attempts to continuously revise the belief in a given hypothesis until it either
falls below a threshold x1 and is discarded, or rises above a threshold x2.
Other attention control issues that need to be addressed include:

�� representation of the rule set within the control policy;

�� some hypotheses are not intended to become concept functions, simply to influence
selection within local control policy (maybe changing camera viewpoint or tutoring);

�� send service requests on a per cycle basis or less frequently, depending on task
relevance, computational cost and quality of service parameters; and

�� how the values of x1 and x2 are set for each member of the hypothesis set.

Services that require particular views (and therefore can influence the motion of the robots)
may conflict for resources or may create situations that ‘demand’ unsafe motion for the
robots. Therefore, the service commanding/coordination/control structures must be
performed with an intrinsic knowledge of views, kinematics/capabilities of the robots. This
requires a reactive co-ordination that activates/de-activates these modules according to the
demands of the service requests and this intrinsic knowledge. This coordination, combined
with the view-request of the service-modules that specifies views according to their current
processing, form the base of the attention control. The services/modules, developed in
WP 1-5 are co-ordinated according to their requirements (if any) of quality of service and
costs, and the available system resources (mainly robots).
Therefore, highly reactive co-ordination modules interact with these modules at each
processing-cycle to ‘direct’ the camera/robot entities (evaluating, starting and stopping the
individual services). In order to improve the overall performance, of the system, the local co-

 9

ordination modules communicate with a central "contract manager" module, which performs
task-assignment. For details see Deliverable 6.1.

3.3 Learning of behavioural models
For ActIPret, there are two types of relevant learning that take place in the learning phase:

�� learning of general activity models (described by “action verbs”) such as “open the
CD player”; and

�� learning of general object models for object detection and recognition such as “CD”
and “CD player”.

There are several different types of behavioural activity model:

�� Abstract models (parametric, but without specific values): such as "pushing a
button". Abstract models are defined by vision based activity descriptions. For the
“pushing a button example” the abstract model might be defined, for example, by
requiring minimum distance and persistence parameters.

�� Specific models (parametric and with instantiated values): derived from the abstract
ones. These specific models (or at least their parameters) would be embedded within
an instantiated ‘activity plan’. For example, the model for finger pushing the play
button on a CD player might be derived of the previous “pushing a button” abstract
model by setting a minimum distance of 5cm and a persistence time of 5 seconds.

�� Learned sequences (part/whole of activity plan): specific activity primitives combined
into higher-level (more abstract) activity descriptions. For example, the learned
sequence model of "opening the CD player" would consist of alternative sequences of
activity primitives based on exemplars.

�� Hand-coded models: when there is no intention to learn given aspects of the model.
The use of Hand-coded models should be a last resort but may be important where
we want to capture highly specific activities or events that cannot be determined
readily by vision alone (for example, recognising that a music is coming out of a CD
player). Hand-coded models can receive external non-vision triggers to determine
their state.

3.4 Software framework for Cognitive Vision
One of the goals of ActIPret is to develop a general purpose framework for CV, that can be
used not only for the ActIPret demonstrator but also in other CV applications, other vision
systems or even vision and robotics systems. In this Section we describe:

�� related work relevant for framework design

�� the goals for such a software framework;

�� the design decisions to realise the framework;

�� two particular principles the framework builds on (the ‘service principle’ and the
‘hierarchy principle’);

 10

�� the structure of the individual components; and

�� the mechanism to manage resources and to select components.

3.4.1 Related work
Throughout the course of computer vision as a research topic, much effort has been applied
to the transfer of ideas and results into practical vision systems [1]. Since 1999 the dedicated
Conference on Computer Vision Systems (ICVS) has provided a valuable platform for this
effort. But still there is a big gap between theoretical algorithms and commercially available
vision component products. In the sense of component-based system programming (as seen
from a programming perspective [2]) CV systems can also be built around many ‘basic’
vision components like object recognition or active tracking. Hence developments in building
general component-based vision systems are equally relevant for the software framework of
a CV system.
Besides a large number of application specific implementations of frameworks and
architectures, there are generic frameworks designed to distribute and schedule ‘small’
subtasks like binary and basic pixel operations [3,4]. The fixed processing time of such basic
operations and the pre-defined pipes and filter dataflow means that a static scheduling can
be calculated in advance. Here the main goals are the efficient distribution on different
HARDWARE like DSPs or FPGAs and the assurance of real-time constraints.
From a perspective of frameworks and architectural guidelines for vision components of the
typical vision component size (more closely related to component-based system
programming), the field of autonomous robotic is of relevance. Some of the robotic systems
using vision components are described in [5-11]. All of them provide mechanisms to
configure a system set-up during compile or start-up time. But no real dynamic component
selection and activation is permitted.
Probably the most relevant work is the OROCOS project (www.orocos.org) that aims to
develop a common basic framework for developing robot control software. OROCOS
designs and implements (among many more) some of the principles for robotic control, which
are also of relevance to perceptual requirements (e.g. coordination, reactive behaviour [12-
13]). For example, we reused some of the basic communication patterns from OROCOS for
the IDL-description. However, OROCOS only started in September 2001 and it is not
expected that implementation results can be exploited before end of 2002. Related tools to
develop frameworks are discussed and evaluated in Section 4.4.

[1] W. Förstner: “10 pros and cons against performance characterization of vision

algorithms”; Workshop on "Performance characteristics of vision algorithms",
Cambridge, 1996.

[2] C. Szyperski: “Component software”; Addison Wesley; United Kingdom 1999
[3] F. Torres, et al; “Simulation and scheduling of real-time computer vision algorithms”;

ICVS 99.
[4] D. Benitez, J. Cabrera: “Reactive computer vision system with reconfigurable

architecture”; ICVS 99.
[5] J.S. Albus; 4-D/RCS: “A reference model architecture for Demo III”; IEEE

ISIC/CIRA/ISAS Joint Conf.; Sept 1998.
[6] M. Anderson, A. Orebäck, M. Lindstöm, H. I. Christensen: “ISR: An intelligent service

robot”; in ``Intelligent Sensor Based Robotics'', Eds: Christensen, Bunke, and
Noltemeier, Lecture notes in Artificial Intelligence, Springer Verlag, 1999.

 11

[7] Stefan Blum: „OSCAR - Eine systemarchitektur für den autonomen, mobilen roboter
MARVIN“; In Autonome mobile systeme, informatik aktuell, pages 218-230. Springer-
Verlag, November 2000.

[8] R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand: “An architecture for autonomy”;
IJRR Vol. 17, pp 315-337, April 1998.

[9] J. Cabrera-Gamez, A.C. Dominguez-Brito, D. Hernandez-Sosa; “CoolBOT: A
component-orientated programming framework for robotics”; Dagstuhl seminar 00421,
Springer-Verlag Lecture notes in computer science, 2001.

[10] P. Steinhaus, M. Ehrenmann, R. Dillmann; “MEPHISTO A nodular and extensible path
planning system using observation”; ICVS 99.

[11] O. Stasse, Y. Kuniyoshi: ``PredN: “Achieving efficiency and code re-usability in a
programming system for complex robotic applications”; ICRA 2000.

[12] R.C. Arkin: “Behaviour based robotics”; The MIT Press 1998.
[13] R. A. Brooks: “A robust layered control system for a mobile robot”; IEEE Journal of

robotics and automation, Vol. 2, No. 1, pp.14–23, March 1986.

3.4.2 Goals
This section summarises the important design goals. Besides the needs and principles of
cognitive vision (see Section 2), there are several goals that refer to general principles of a
framework:

�� Task driven (pro-active): as described in Section 2.3 the ActIPret system has to
deal with limited resources. Hence the system has to focus its resources (processing
power, views etc.) according to task relevancy.

�� Data driven (re-active): the system has to react to the sensor input provided by the
cameras. The goal is to build a CV system that reacts and responds to human
actions. Hence reactions must take place in a time scale appropriate to the natural
speed of action of humans

�� Scalability: should be linear or as close as possible to linear. In practice this means
that duplication of any component should result in (as near as possible) duplication of
the associated service assuming the existence of similarly duplicated resources.

�� Control: scalability also implies distributed control throughout the system (a single
control component would not scale). Hence, each component has its own "control
policy" (albeit at different scales of task relevance) to control the services requested
and the results or data obtained.

�� Modularity: the development effort for CV software can be limited by reusing
software segments. Modularity forms the basis for software reuse and a dynamic
system structure.

�� Independence of components: whichever component requests a service should
receive the response. Hence every component has the control of the services it
provides to other components and the services it requests from other components.

3.4.3 Design decisions

�� The system is distributed: vision and interpretation require huge computations. In
order to achieve scalability and parallel development the components should be
distributed. Consequently resource management should be distributed too.

 12

�� The components of the framework run asynchronously: the effort required to
synchronise a distributed system is too big related to the simplification reached in the
integration process. In particular, synchronisation is pointless for components having
different temporal behaviours such as tracking and recognition.

�� Data consistency: control over service responses from other components requires
assuring that the data received is made consistent. For example, if two detectors on
different cameras are asked to find a hand, the responses must be fused in the
component that requested these two services.

�� Number of resources: the number of resource types in a generic system can be
very high. However for CV systems this number is of the order of 3. For example, in
the ActIPret demonstrator there is the CPU time and the realisable view together with
the image delivery. Hence, for CV systems the number of resources a component
can request is small.

3.4.4 Design principles
The framework is built according to two major design principles derived from the list of goals
and based on the design decisions.
The ‘service principle’
Our first goal for the CV framework is to build a task driven system and so every distributed
component is task driven. From the point of view of a component, it has to provide one or
more interfaces to make its functionality accessible. Using this interface other components
can initiate one or more tasks. Components can be regarded as black boxes and so
according to the goal of component independence these interfaces have to describe all the
abilities of the component. These interfaces are called services and the component acts as
the service provider.
Any component can use the services of other components. In this case the component acts
as the service requester. So every component ‘presents’ its abilities by providing services
and every component makes use of the abilities of other components by requesting services.
These services form the complete interface for a component and hide the implementation.
A special component, called the service list, provides the mechanism for any components to
find out about the services that other components provide. This mechanism operates as
follows: Every component registers its services in the service list. Using the service list as a
‘yellow pages’ directory for services, a component can find on-line the services it requires
and can then establish communications with the relevant component(s).
In order to provide a simple service selection the service list entry consists of the service
name, some service specific properties (describing the service in more detail) and an
abstract description of the abilities of the component. This abstract description contains two
main descriptors:

�� Quality of Service (QoS): describes performance (confidence, accuracy, speed etc.)
a service can actually (when registering/updating the entry in the service list) deliver;
and

�� Costs: abstract descriptions of the effort required to establish a service. This is used
to quantise the narrowness of a resource and the conflicts (incompatibility) of
resource requests. For example, the effort to transfer a running component from one
PC to another PC (i.e. to get more CPU time on that PC) is embodied by migration
costs.

 13

Several other descriptors are possible, for example, constraints related to a service. However
these two descriptors (QoS and cost) are the minimum and will be used and implemented for
all components.
To cope with limited resources (see Section 3.4.6 on resource management below) it is
necessary to introduce a priority descriptor to quantify the need of the component
requesting the service: This is set by the component requesting the service to inform
resolution of conflicts between service requests.
These three abstract descriptors (QoS, costs, priority) provide a mechanism to support a
distributed system and a dynamic system set-up. They support the overall goals of scalability
and modularity and should provide a reliable system that is able to react online to the failure
of a component or to the introduction of a new component.
The ‘hierarchy principle’
Fully agent-based systems do not use a hierarchy. All agents negotiate until a configuration
is reached. This is thought too time consuming for a reactive system. To reduce
administrative communication overheads during decision-making (service selection) a strict
hierarchical structure of components is used. Hence every link between components has a
higher-level component and a lower-level component. The higher-level component always
orders the task (service) the lower-level component has to process (provide/deliver).

3.4.5 Component structure
Using these two principles a component can be separated into three parts. In the main part
of the component the real functionality is placed. This part is encapsulated by two interfaces.
The top interface provides the services of the component itself and the bottom interface
requests services from other components. The example in Figure 1 shows an object
recognition component that provides three specific object recognition services: identification,
detection and search of/for objects. The service provider interface configures the
component for the requested task and is responsible for the communication with the
requesting component. The service requester interface is responsible for the selection,
configuration and management of services requested by the main part of the component. All
communications to lower level components are realised through this interface.

Object Recognition

Service1
Identify

Service 2
Detect

Service 3
Search

Service provider
Interface

Component

Service requester
Interface

(Output)
side

(Input)
sideInput Selection

Figure 1: Component structure.

The framework makes use of two types of component:

�� Main Components (MC): are the workhorses of the system. All necessary visual
computation and task control (excluding the effects of resource constraints) decisions
of the system are placed inside MCs. Typical MCs for a CV system include: object

 14

recogniser, feature tracker and reasoning engines. MCs register their services in the
service list and are able to select services of other components.

�� Controller Components (CC): represent resources inside the system. It is not
important if the real actuator driver is part of the CC or if the CC is just a gateway to
the real driver. Typical CCs for a CV system include are view controller (for
establishing camera poses, change focus, cutter etc.) or CPU controller.

3.4.6 Resource management and service selection
Use of the ‘service principle’ presents a major challenge in that vision systems have to deal
with restricted resources. There is always a limited amount of CPU power, only a limited
number of cameras and the free working space of the robots used to get good viewpoints is
constrained. Therefore access to resources must be managed to solve conflicting resource
needs.
In order to optimise resource allocation, it is necessary to manage the components that raise
the resource requests. Otherwise components might be activated that have little or no
probability of obtaining the necessary resources. For example, to start a component on a PC
with nearly zero available CPU time makes little sense. Hence every component (or, more
precisely, its abstract representation the service) has to be managed, because of the
restricted and conflicting resources it requires.
Using the component example in Figure 1 the method of selecting a service is the critical
issue. Service selection serves the purpose of selecting resources efficiently. Therefore it
has the goal of implementing and resolving resource management. The mechanism
introduced here is distributed and based on the CORBA trader service (or a derived method),
defined by the OMG (Object Management Group www.omg.org). Figure 2 gives an example
sequence for the set-up of a component connection.

 15

Component I

Service
X

Service
Y

Component II

Service
Z

Component V

Service
B

Service
C

Component IV

Service A

Component III

Service
A

Service
B

Serv. Comp. Description
A III QoS, Costs, Constraints, ...
A IV QoS, Costs, Constraints,...
B III QoS, Costs, Constraints,...
B V QoS, Costs, Constraints,...
C V QoS, Costs, Constraints,...
.
.
.
.

Service List

(3) ask for A

(3) III, Perf., ..
 IV, Perf., ..

(4) configure

(4) main data flow

(1) export B

(1) export A

(2) need A

Figure 2: Selection and configuration of a service. Numbers (i) correspond to the item
numbers in the text. Not all messages/arrows are shown.

The following items describes the sequence for registering a service in the service list and
selecting the service(s) requested (item numbers correspond to numbers in Figure 2):
1. During the component start-up, every component registers its services in a global service

list. In CORBA terms this is the export of a service offer (this start-up does not have to be
at the same time as the system start-up!) A service list entry consists of the service
name, the ID of the component providing the service and an abstract description of the
service (i.e. quality of service QoS, costs, constraints, etc.). This entry is updated only if
major changes of the component description occur.

2. If a component needs a service, it asks its service requester interface to establish a
connection. From this point in time the main component part, where the real functionality
is placed, is decoupled from the mechanism to set-up the connection. All selection,
configuration and communication is done by the service request interface (see Figure 1).

3. The service requester interface starts the search for a service in the service list (it asks
for service "A" in Figure 2). In CORBA terms this is known as an import. The component
description (QoS, costs, etc.) makes it possible to select the relevant subset of all
components providing the service "A". The service list returns the list of corresponding
service offers (in our example, for components III and IV).

4. The service requester interface selects one of the service offers received and initialises
an OSCAR link to the selected component (in fact, to its service provider interface). This
completes the process to find the service requested.

 16

The component that delivers the service is responsible for generating and updating these
values in the service list. Especially, QoS and costs depend on available resources. The
necessary information on resources required to calculate QoS and costs is received from the
relevant controller components (CC). This process is referred to as resource management.

3.4.7 Management of models
This Section applies to task based behavioural models at the highest level of abstraction
such as those described in Section 3.3, but also to the use of models more generally (e.g.
object models) in computations throughout all of the ActIPret components.
Different components will need access to different model types in order to perform their
characteristic operations. Each component only supports a limited number of model types. A
Support Vector Machine (SVM) based recogniser will need a SVM model; a Principal
Components Analysis (PCA) based recogniser will need a PCA model; a Hidden Markov
Model (HMM) based behaviour analyser; and the ACIN detect and tracking component
requires a wire frame model. The component selection mechanism of the service principle
has to ensure that components selected for a task can access models of the object of a
supported model type.
Consider the situation for object recognition: The component selection is model type specific
e.g. PCA model for the PCA recogniser. The model type is itself object specific e.g. if we
have a PCA model of a CD player. However, the object is not known before the real service
request is generated. Hence from the software framework point of view, model data behaves
like a varying resource.
One brute force method to solve this problem would be to ask every component if it can
detect (recognise, track, etc.) the object. Most would answer that they cannot detect the
object because of missing model data of the type required.
Hence we suggest implementing the following method for managing model data (i.e
managing the model data constraint for selecting components):

1. There are one or more model server(s). Model server(s) contain either the model
data themselves (especially for common model types) or have reference entries to
model data that is component specific and hence placed in the component itself (e.g.
SVM model data is placed in the SVM recogniser component).

2. Every model data dependent component adds the supported model data types to the
service description in the service list.

3. At the first step of component selection, the service requester evaluates the available
model data types for the object to be computed. It receives this information from the
model server.

4. These model data types are then forwarded to the service list as part of the service
request.

5. At the service list this data is compared to the entries and appropriate selections can
be made.

This method is asymmetric compared to other selection constraints like the view or the CPU
time, because the service requester has to take account of requirements from the service
provider. But in principle the view can be handled by the same method. The service
requester could ask all available cameras for the potential to realise a specific view and then
forward this information to the service list, where every entry contains the cameras they can
use. The main differences between the model data and the view are:

 17

�� the number of cameras in the system is probably higher than model server(s) (just
one for the initial demonstrator). Hence the communication overhead is higher; and

�� the view that should be realised depends on the implemented method of the selected
component.

This method meets the goals for the software framework for CV. The restricted resources are
still divided according to the actual tasks (according to task relevancy) in an adequate
timeframe (not to lose important data - data driven). The method scales linearly (although the
number of model servers is assumed to be small) (scalability) and supports dynamic and
modular composition (modularity) of independent components (independence of
components).

3.5 Realisation of principles and requirements of Cognitive Vision
This Section is intended to show how the generic framework solution presented realises the
principles and requirement for a CV system (goal-orientation and control, reasoning,
memory, learning) described in Sections 2. The AD framework proposed in Section 3.4 is a
tool to implement these principles and requirements.
The goal-orientated nature of CV is realised through the use of components that can
dynamically select the components that are best suited to solve the immediate task. Whilst it
seems that the major task-based control resides in upper level synthesis and reasoning,
each component also provides task-based control for lower level processes. This control
extends from selection of tracking or recognition right down to the selection of the most
relevant views, cues or features.
Task-directed control in each component is most powerful if each component also contains
capabilities to reason about its local tasks and can therefore select appropriate processes.
The belief values form the basis of the method to provide formal values for the reasoning
process. This formalism enables handling of the results of external processing (from a
service that has been requested) and of internal processing within the component itself
(although we are aware that the nature of the belief values might differ substantially
depending on the underlying methods used to obtain the belief values). The service principle
realises distributed reasoning, such that knowledge available in each component can be best
exploited in the current context.
It should now be clear that memory (in particular what could be called short-term memory)
also resides in each component, since it’s related to control and reasoning. Short-term
memory denotes time varying data, e.g., the results of previous processing and reasoning
steps, updates of states and parameters. To ensure that data coming from internal and
external processes is consistent, it has to reside within the component. On the other hand,
there are models in long-term memory (that can have different forms of representations),
which persist over time, such as a model of an object or an activity. It is the ModelServer that
ensures consistency of these models.
The final aspect of CV considered here is learning. As will be seen later in Section 4, a
separate “learning phase” is devoted to initialising the system components. Initially learning
will take place at a component per component basis, e.g. learning to detect hand motions,
learning of belief networks for activity interpretation or learning representations for
recognition. This learning can be done fully off-line (the component alone) as well as with
several components providing the input for learning. For example, hand tracking providing
the input for learning to discriminate hand gestures. It is finally foreseen that during the
phase of interpreting new activities, the system could also learn, though in this case we
should refer instead to ‘adaptation’ to a specific user.

 18

Table 1 provides a summary of the essential items for realising the principles and
requirements of CV:

Principle Realisation

Memory Long term memory: ModelServer (consistency of time invariant data)
Short term memory: distributed to all components (consistency of actual
data)

Learning Distributed to all components:

�� Initial learning phase (off-line, before system operates on its
task) to learn activity as well as object models

�� On-line learning phase (limited learning capabilities)
Extension: learning between components

Control Task-driven to focus processing and exploit resources efficiently
Data-driven to obtain reactive system
Reason about control using memory

Reasoning Formalised services (QoS, costs) report belief values for reasoning
Distributed to use local knowledge and to scale with complexity

Table 1: Realisation of principles and requirements of Cognitive Vision.

 19

4 ActIPret demonstrator
The objective of ActIPret is to develop a vision methodology that interprets and records the
activities of people handling tools. The tasks considered are observable by video streams.
Focus is on active observation and interpretation of activities, on parsing the sequences into
constituent behaviour elements, and on extracting the essential activities and their functional
dependence. By providing this functionality ActIPret will enable observation of experts
executing intricate tasks such as repairing machines and maintaining plants.
The expert activities are interpreted and stored using natural language orientated
expressions (encoded in a conceptual language) in an activity plan. The activity plan is an
indexed manual in the form of 3-D reconstructed scenes, which can be replayed at any time
and location to many users using, e.g., Augmented Reality equipment. Due to the interpretive
level of the system, ActIPret can provide the trainee with feedback when repeating the
operation (in simulation or reality), which results in a superior training effect compared to
repetition without feedback.
A demonstrator will be built to test the generic framework on this scenario. This specific
example of a framework implementation is referred to as the ActIPret demonstrator (AD).

4.1 How the user interacts with the ActIPret demonstrator

4.1.1 AD functional phases
There are 3 substantive functional phases for the AD:

�� Learning phase: in this phase the AD relies on a teacher (as distinct from the expert)
to provide supervised learning examples of activity and object models. For activity
models, the system needs to derive specific models relevant to the scenario that the
expert will demonstrate from the generic models built into the reasoning engine. For
object models, the lower level vision components need to establish parameters for
detection and recognition tasks based on supervised learning examples.

�� Expert phase: in this phase the AD is shown the sequencing of plan primitives that
make up scenario exemplars. This process is synonymous with activity plan
synthesis. The learning phase must have already been carried out before we can use
the expert phase. Expert phase learning may be incremental (take place in several
sessions giving rise to multiple scenario exemplars) although we assume that for any
scenario that the resulting activity plan contains no exemplar sequences prior to
entering the expert mode for the first time. There are 2 elements to the expert phase:

extraction of the linear exemplars; and ��

�� (as a further refinement) organisation and hierarchical grouping of parts of the
linear exemplars to highlight common elements of plan structure. This could
be as simple as combining all of the linear exemplars or could include more
sophisticated plan editing.

Once all expert phase learning is complete, the activity plan is fully synthesised
(represented in the conceptual language) and is stored in a static database.

�� Tutor phase: in this phase the naïve user (the trainee) attempts to perform the
sequencing of plan primitives. This phase is synonymous with both activity plan
synthesis and comparison. The expert phase must have already been carried out
before we can use the tutor phase. As a result, we have the activity plan as
generated during the expert mode stored in a static database. This is the reference
activity plan. There are then 2 elements to the tutor phase:

 20

explanation of the content of the static database to the trainee. This can be
achieved either through natural language based descriptions or through VR
reconstruction; and

��

�� plan synthesis that takes place to a separate transient workspace plan that is
then stepwise compared with the exemplars in the static database. Variations
between the temporary workspace plan and the static database represent
errors in the trainee’s performance.

The need for VR reconstruction within the tutor mode further creates a need for a more
“complete” conceptual language.
These 3 phases are visually summarised in Figure 3.

VR
Reconstruction

Trainee
performance

Scenario
exemplars

Examples of object &
behavioural models

VR
Reconstruction

Temporary
workspace

Activity
Plan

Activity
Plan

Models
database

TUTOR
PHASE

EXPERT
PHASE

LEARNING
PHASE

Figure 3: This diagram shows each of the 3 functional phases with their
corresponding high level inputs and outputs

4.1.2 AD conceptual language
The activity plan is written in a conceptual language. A very simple activity plan might be
represented as follows (using C++ derived notation – the conceptual language is not yet
developed fully):

// ---
// Using C++ notation (refer also to the paper on learning models …)

linear_exemplar(1) {

button_press(button0,cdplayer0);
button_press(button1,cdplayer0);
pick_up(cd0,nondef);
put_down(cd0,cdplayer0);
button_press1(button1,cdplayer0);
button_press2(button2,cdplayer0);
}

button_press(button1, cdplayer0) : public button_press(b,object) {
 // button_press(b,object) would be defined within the reasoning engine
 minimum_distance = 10.0;
 persistence_time = 5;

 21

 }
// ---

4.1.3 Our approach to building the first AD
The initial thrust of the development work of the project will be in the iterative development of
the expert phase. Development starts with very simple activities beginning from the basic set
of objects for the CD scenario and the action verbs (grasp CD, move hand, CD-player,…) as
suggested by COGS.
It is our goal that objects are shown and learned before being used in activity interpretation. It
is assumed that the intention of the expert is known. Hence objects and basic activities
involved are known at the beginning.

4.2 AD System Structure
Figure 4 shows the overall structure of the ActIPret Demonstrator (AD). Three different types
of process can be detected. The relationships of these processes mirror the hierarchical
principle introduced in the previous section. The higher the data abstraction of the process
output, the higher the level of the corresponding component in the AD diagram.
The components are arranged in three main layers, Synthesis, Pre-Reasoning and Pre-
Attention and Attention. Each layer corresponds to a different level of data abstraction. Pre-
Attention & Attention groups all functions that produce as output object poses. Pre-
Reasoning computes temporal and spatial relations for one or two objects. Synthesis finally
oversees the complete scene and produces the activity plan, the final abstract description of
the activity. The components alone as well as together implement the need of a CV system
for belief values, attention control and learning.

 22

Pre-Attention & Attention

CameraCamera

Pre-Reasoning

Synthesis
da

ta
 a

bs
tra

ct
io

n
Activity Plan
Generator

Activity
Reasoning

Engine

Gesture
Recogniser

Object
Relation

Generator

Object
Recogniser

Motion
Detector

link:
control &

data exchange

process:
group of

components

Camera

Object
Detector &

Tracker

component:

Figure 4: Abstract view of the ActIPret Demonstrator system structure

4.2.1 Example set-up for expert mode
An example system set-up of the ActIPret demonstrator during the expert mode could look
like Figure 5. All real components are assigned to an abstract process.

�� Main Components (MC) can be further subdivided into:

Servers that only provide services; ��

��

��

��

User(s) that only require(s) services;

Components that provide and require services; and

Components that provide and require services and request a view (marked
with a chequered square in Figure 4).

�� Controller Components (CC) that try to service as many resource requests as
possible; and

�� Service Lists where all available services are registered.

 23

As already mentioned in Section 3.4.6, service selection of components with varying
resource requests can result in significant communication overheads. This is the case
particularly with the ‘realisable view’ and therefore the corresponding robot pose is extremely
variable and its behaviour is particularly environment dependent. If a component requests a
view directed to track the top of an object (e.g. the CD) every change of position of this object
can cause huge changes in the position of the robot. To reduce the communication overhead
when using realisable view, the service list is separated into two different parts:

�� the view independent service list where all components are registered that don’t
require the resource ‘realisable view’; and

�� the service list with view controller where all components are registered that
require the resource ‘realisable view’.

All view dependent components are placed in one specific layer as below. This simplifies the
service selection and robot assignment process for this type of service request.

PC n Camera n

Attention

Object
Recogniser

Pre-Attention

Object
Detector &

Tracker

Hand Detector
& Tracker

Legend

Camera 1

Pre-Reasoning

Synthesis

Hand Detector
& Tracker

Object
Detector &

Tracker

Pose Server

Object
Relation

Generator

Activity
Reasoning

Engine

USER
(HMI)

Activity Plan
Generator

Object
Recogniser

Pose Server
CPU

Controller

Gesture
Recogniser

Ellipse
Detector

da
ta

 a
bs

tra
ct

io
n

Service List

Detect Motion:
QoS, Costs, Desc. (PC1)
Track Object in 2D:
QoS, Costs, Desc. (PC1)
Track Object in 2D:
QoS, Costs, Desc. (PCn)
.
.

Task based control
(Service request)

Image data driven
(Service response)

communication link

Component
Namereal component

Process Nameabstract process

Service List with ViewController

Recognise Object: QoS, Costs, Desc. (PC2)
Track Hand: QoS, Costs, Desc. (PC1)
Track Hand: QoS, Costs, Desc. (PC2)

View
Controller

1

View
Controller

n

View
Controller

2

View independent

View dependent

can request a view

Image ServerImage Server

PC 1

CPU
Controller

Motion
Detector

Model

Model Server

Figure 5: Example set-up

The example set-up for the ActIPret demonstrator in Figure 5 realises all the principles and
implementation rules introduced in the previous sections. Since the service principle is
related to the dynamic set-up of the system, it is invisible. Nevertheless, the two different
service lists can be seen on the right side.

 24

4.3 Description of components
This Section contains a short overview of each functional component of the AD. A fuller
account of each of these components can be found in Appendix A with IDL in Appendix B.

4.3.1 Service list (ACIN)
The Service List is a database where components register their abilities and the properties of
these abilities. These abilities are called services and form an abstract interface description
of the components. All components and their services depend on the resources available.
Resources are restricted. There is always a limited amount of CPU power, only a limited
number of cameras and the free working space of the robots used to get good viewpoints is
limited. Therefore access to resources must be managed to solve conflicting resource needs.
The following three values are used to parameterise an abstract service description:

�� Quality of Service (QoS): describes the performance (confidence, accuracy, speed,
etc.) a service can actually deliver.

�� Costs: are the abstract descriptions of the effort (resource requirement) of the
establishment of a service.

�� Priority: is set by the resource-requesting component to give a hint on how to solve
conflicts of resource requests.

4.3.2 User HMI (COGS)
This module has overall control of the ActIPret system, and switches it between the major
phases of operation:

�� Learning phase: individual models are trained on databases of generic information.
�� Expert phase: the entire system is run in a 'record-only' mode analysing the activities

of an expert while demonstrating some specific part/whole of scenario and providing
explicit start and end signals. Activity plans from each demonstration of the scenario
are combined into a composite representation of the scenario.

�� Tutor phase: the system either 'explains' how a scenario is carried out to a learner
via some VR representation or 'watches' the learner attempt to carry out the scenario,
either giving a binary 'correct/false' interpretation, or attempting to give guidance to
the user when errors or confusion occur.

4.3.3 Activity planner (COGS)
In expert mode, the Activity Planner is concerned with the synthesis of an activity plan in a
static database for the scenario as demonstrated by the expert. The scenario is
demonstrated to ActIPret as exemplars. These exemplars may have end-to-end significance
or the expert may choose to structure them in a hierarchical fashion. Where the expert
structures the exemplars in a hierarchical fashion, the result is a hierarchical activity plan with
embedded learned sequence models. Exemplars of the plan are represented in the
conceptual language. This conceptual language will be defined formally elsewhere.
The conceptual language in general consists of:

�� Sequences of plan concept functions (atomic plan primitives) organised as a mixture
of exemplars with end-to-end significance or organised into a hierarchical structure;

 25

�� Specific behaviour models for activities, actions or events observed in the
exemplars and derived from abstract models defined in the activity reasoning engine;

�� Limited domain specific data outside the scope of existing models, necessary for
the correct interpretation of the scenario. Such domain knowledge may include state
variables to represent specific aspects of the functions on a CD player.

In tutor mode, VR reconstruction of the scenario using the activity plan will provide initial
instruction for the trainee. The activity planner is then used to generate a new temporary
workspace activity plan for stepwise comparison with the static activity plan produced in
expert mode. Comparison of the static and temporary plans will be used to determine
whether the trainee has made any errors. VR reconstruction will then be used to explain any
discrepancies to the trainee.

4.3.4 Activity reasoning engine (COGS)
The Activity Reasoning Engine can be represented at a high level as shown in Figure 6.
 ACTIVITY PLANNER

D
AT

A
PR

O
D

U
C

ED
 B

Y
SE

R
VI

C
E

R
EQ

U
ES

TS

SE
R

VI
C

E
R

EQ
U

ES
TS

TO
 G

R
 /

O
R

G
 /

O
R

 /
H

R
C

O
M

PO
N

EN
TS

ACTIVITY REASONING ENGINE

C C C C

VISUAL
INDEX

CONTROL POLICY

HHHH

Figure 6: High level view of activity reasoning engine.

The activity reasoning engine contains four separate elements:

�� Control policy: determines at the most abstract level the task control strategy for the
whole ActIPret system. When ActIPret is first started, this policy will be generic e.g.
"find possible hand objects". This policy will evolve as task relevant vision data is

 26

produced. For example, if a hypothesis has emerged that a candidate hand object is
moving with a consistent trajectory, then the control policy should then locate
candidate objects along that trajectory that the hand might pick up.

�� Visual index: is a database of task relevant objects. The definition of task relevance
will depend on the context set by the control policy.

�� Hypothesis functions H: provide posterior probability estimates for a set of plan
hypotheses. For example, using the previous example, the probability hi is given by
hi = grasped-by(<object1>, <object2>). There are two distinct types of plan hypothesis
function: those that map object tuples to deictic relationships that may lead to
instantiated plan concept functions and those that map individual objects that are
required for informing the control policy.

�� Hypothesis manager: see Appendices for more details.

�� Concept functions C: represent instantiated instances of activities, actions or
events.

4.3.5 Gesture recogniser (COGS)
The Gesture Recogniser (GR) module is contained in the view-independent area of the
ActIPret system and will use a Time-Delay Radial Basis Function (TDRBF) network to
categorise characteristic purposive 3-D hand trajectories (gestures) over time. During the
learning phase, the network learns the appearance of the general categories of these hand
trajectories from a database of example data.
The tasks concern manipulation of objects by hands in 3-D space. Therefore the major
purposive hand gestures (or sub-activities) that need to be recognised by this module are:

�� A hand moving away from the torso

�� A hand moving towards the torso
On initialisation by a service request from the activity reasoning engine, these can be
recognised by the GR via a TDRBF network using either 3-D hand trajectory information
(relative to the torso centroid) or 6-D hand/pose trajectory information. Information is passed
back so that complex activities (such as the hand grasping an object) can be recognised via
additional attentive queries, such as `Is the hand empty or holding something?'
Where more than one hand is present in the scene, several parallel service requests can be
made, one for each hand.

4.3.6 Object relationship generator (ACIN)
The component Object Relationship Generator controls the generation and maintenance of
spatio-temporal relationships between two objects. It determines relationships between the
objects (hand, CD, player, button) in 3-D at one instance or over several cycles. The
relationships can be quantitative (frame relative to frame) or qualitative (proximity, above,
left, moves along, etc.).
Specific functions

�� to confirm/create specific deictic relationship queries. This uses specific references to
objects for answering a specific (single shot) query, for example proximity<Obj1,
Obj2>, where Obj1/2 is a reference to a given object;

�� to create deictic relationships. This uses other components to obtain potential object
candidates to establish the relationship. The relationship determines levels of task-
related interest of combinations, e.g., proximity. The evaluation of the relationship

 27

may be recreated each cycle or updated. Priorities for this would be determined by
the Control Policy, e.g., 'find objects on hand trajectory’ (with priority p); and

�� to update current deictic relationships. This newly evaluates a previously created
relationship each cycle by using the updates from other components such as
tracking.

Specific relationships
The specific relationships derived by the Object Relationship Generator are simple, task-
related operators and are in two forms (see deliverable 3.1 for more details): Basic
relationships are generally behaviours of a single object or simple relations between two
objects. Aggregate relationships are relations between two (or more) objects and in the
spatio-temporal domain. Of particular interest for the ActIPret system will be:

�� Purposive behaviour trajectory: a single object trajectory is of interest for the
synthesis process, if the object (hand) makes a purposive behaviour trajectory, that is
a trajectory that is task relevant. An example is a hand moving towards an object. The
goal is to detect the purposive trajectory as early as possible to be able to focus
processing to the area indicated by the direction of the trajectory. An example is
grasping, where processing should be focused on the objects at the estimated grasp
location. Methods to detect a purposive behaviour trajectory can be based on Kalman
filters (as proposed by ACIN) or a time-delay Radial Basis Function (RBF) network
(as proposed by COGS).

�� Distance between two objects (mutual proximity): the exact distance between two
objects depends on the representation of the objects used. The simplest
representation uses the reference coordinate frames. In this case the distance is the
Euclidian distance between the origins of the two object coordinate frames. If the
objects are represented with a hull, the distance can be defined as the closest point
between the two hulls.

�� Find objects near to each other: this service provides a pre-attentive predictive cue,
based on the assumption that the closer two objects are to each other, the more likely
they are to have some task-relatedness.

�� Object near trajectory of object: this service provides a pre-attentive predictive cue,
based on the assumption that the closer an object is to a hand's trajectory, the more
likely it is to be manipulated by that hand.

4.3.7 Service list with view controller (Profactor)
The Service List with View Controller is very similar to the normal Service List, which is
specified by ACIN. This process takes over additional functionality to assign a specific robot
to a requested service.
This component contains the View Controllers, which are responsible to operate the view
requests of the services. It contains functionality to merge the requested view points and
initiates the movement of the robots. For details see Deliverable D6.1.

4.3.8 Hand detector and tracker (FORTH)
The functionality of this service is to detect and track human hands present in the scene
viewed by the ActIPret stereoscopic vision system. This functionality will be based on:

�� Colour information: skin colour models will be used as a cue indicating the
presence of hands in the viewed scene. Several models are currently under review.

 28

�� Motion information: since hands participate in activities and actions, a skin-coloured
region in the image becomes more salient if it moves. Motion is measured with
respect to a world-centred coordinate system, which actually coincides with the
coordinate system in which camera positions are measured and reported.

�� Depth information: depth information is necessary for reporting 3-D position of
hands in the image. The "locality of reference principle" (in simpler words, the
continuity of the 3-D locations of a hand as a function of time) will be used to resolve
ambiguities.

�� Tracking mechanisms: the previous modules provide visual cues to tracking
mechanisms that will track the various hand hypotheses in the scene. Kalman filtering
is a classical tracking mechanism. Additionally, current investigations include particle
filters and more specifically, tracking based on the condensation algorithm.

The above-mentioned techniques are accompanied with techniques for computing camera
positions that are beneficial for observing the scene and tracking the hands present in the
scene. For the moment, two criteria are considered:

�� The most salient hand hypothesis should remain in the field of view of both cameras.

�� The viewpoint should be such that the most salient hand moves in an almost front-
parallel plane (appears to be moving laterally).

4.3.9 Object detector and tracker (ACIN)
The functionality of this component is model-based detection and tracking of objects.
Tracking means to regularly determine the object location (and orientation) in 3-D in soft real-
time (latency not longer than several frame cycles). 3-D pose is extracted from one or more
2D camera views. The model is either a wire-frame representation using vertices, lines,
ellipses and regions (for man-made objects like a CD player) or just colour, colour
histograms or texture (e.g. for regions). Detection is one possible initialisation of tracking and
can be based on colour, colour histograms or texture derived from the model. Using data of
extern recognition is another way for initialisation.
The principal output of this service is 3-D pose data (position and orientation) relative to a
world coordinate frame at each time step (i.e. an update every 33ms), together with an
uncertainty value for pose accuracy (standard deviation) and a confidence value for object
tracking.
Additional output could be the re-projection of the object into images, image location of
(found/projected) features, the location and confidence values of individual features in
images in 2D (e.g. to inform other trackers about possible occlusions - see section 3.), and
possibly the transformation to other coordinate systems (e.g. camera, head).

4.3.10 Object recogniser (CMP)
This component uses an example based object representation to learn and recognise objects
in a scenario. See also Deliverable D4.1.

4.3.11 Hand recogniser (FORTH)
To be defined if more than hand detection is required.

4.3.12 Motion detector (FORTH)
The Motion Detector module finds moving objects in the scene, while the observer is also
moving. Motion is measured with respect to a world-centred coordinate system, which

 29

actually coincides with the coordinate system in which camera positions are measured and
reported. Since the observer also moves, the solution of the problem relies on knowledge of
the depth of the scene. Provided that depth is known (stereoscopic processing) and camera
egomotion is also known, a motion field can be predicted, assuming that the 3-D world
remains rigid. The actual flow is then compared to the predicted flow and significant
deviations between these two flows are attributed to independently moving objects.

4.3.13 Ellipse detector (CMP + ACIN)
Detects ellipses in an intensity (colour) image. Ellipses can be partially occluded. Ellipses are
found by grouping of convex edge strings.

4.3.14 Image server (camera) (Profactor)
The Image Server is responsible for providing the images of cameras, which are mounted on
a robot. Since it is not a good idea to send whole images with TCP/IP, we will use shared
memory to transmit the data.

4.3.15 Pose server (Profactor)
The Pose Server is responsible for providing the current position and orientation of the
Robot-TCP (Tool Centre Point). The services also provide the current information of the
camera angles, which are mounted on the robot.

4.3.16 CPU controller (Profactor)
The CPU Controller is a service, which determines the available CPU-Time of a specific
computer. The information is used to find a computer with the lowest CPU usage for a
requested service.

4.3.17 Scene modelling for visualisation (CMP)
The three-dimensional scene will be described using the VRML standard and presented
using third-party VRML browser/viewer. The objects can be parameterised (scale, colour,
surface texture, etc.). Humanoid model should be H-Anim 1.1 compliant and it can be
parameterised, too. Data describing motion can be converted to the VRML interpolator
format and used in VRML scene.

4.4 Framework tool selection
A very first version of the ActIPret framework must be presented after year 1. For
successful integration and testing this early version of the framework, establishing
the component communication as soon as possible is imperative. A first evaluation
did show that the ActIPret Framework must base on an existing component-based
software-tool, which is on a higher abstraction level than middleware such as RPC
[5], ACE [7, 8], or CORBA [9].
Middleware: Considering safety of investment in the future and the existing interfaces,
CORBA of the OMG [10] is superior to ACE and RPC.

 30

4.4.1 The tools for the framework

Evaluated Framework-tools / Framework concepts are: RCS, NASREM [1],
SAPHIRA [2], BERRA [3], DAMN [4], AYLLU [4], MOBILITY [11], OROCOS–Patterns
[13], SMARTSOFT [12], OSCAR [14]. The evaluation was done according to
availability, modern design, clear component design and debugging support.
A preselection phase did show that the most suitable versions are MOBILITY,
SMARTSOFT and OSCAR. Up to now there is no implementation of the OROCOS
concept available. Because it is an interesting concept of an impressive and powerful
consortium the design pattern of OROCOS was also part of the evaluation.
As best fitting middleware, we identified CORBA. These 4 where evaluated in more
detail according to the following topics:

Availability:
1. Sources Available?
2. Available Licences?
3. Documentation quality?
Easy to use
4. Required knowledge in Middleware communication
5. Support of the used Hardware
6. Debugging opportunities
Safety of investment
7. Will the system be maintained and improved in the future? How many engineers

are working on it?
8. How long does the system exist
9. Will adaptation made in ActIPret migrate into the system or will every release

cause new incompatibilities?
10. How widely is the system used now and in the future (estimated)
11. Is the system based on CORBA?
12. Prior experience with the system?
13. Open Source?
Functionality supported
14. Vision modules
15. Robotic Modules
16. Variety of supported functionality
17. Suitability of functionality

Ranking: 1 good – 5 poor, points that are of specific relevance are marked
 Reason for rejection
 Strong contra-point
 Positive Point

SMARTSOFT MOBILITY OROCOS OSCAR

1 3 (the system is partially
available and the developer
has promised send a free
version. But not received yet)

5 (The system is not
available for tests)

5 (The system is now in the
definition phase and not available
in the near future)

1 (The system is already
available)

 31

2 3 (system in under the GPL
licence)

5 (it is a commercial
product and the licence is
not available now)

1 (system will be under the GPL
licence)

1 (free licence available, will
be made open source)

3 1 (well documented) 2 (documentation
focussing on RWI robots)

- (documentation of the
communication pattern available)

5 (limited documentation in
German only)

4 2 (knowledge of the
underlying middleware ACE
is not necessary)

3 (only some knowledge
about the naming service
of CORBA is necessary)

(The underlying middleware is
not known yet)

2 (knowledge of the
underlying middleware
CORBA is not known. Only
IDL knowledge is necessary)

5 3 (no support for the
hardware, but no barrier to
implement it)

3 (no support for the
hardware, but no barrier to
implement it)

(Till now no support for hardware) 2 (support for the AMTEC
Hardware already available)

6 2 (the system provides
debugging functionality)

2 (the system provides
debugging functionality)

(no debugging functionality
defined till now)

2 (the system provides
debugging functionality)

7 3 (the team of the
developers is very small)

2 (the team of the
developers is small. The
web presence is
decreasing since bought
by iRobot)

1 (the consortium is very
impressive)

3 (very small team)

8 1 (the system exists for 5-6
years)

1(the system exists for 4-5
years)

5 (the system is not existing yet) 1(the system exists for 4-5
years)

9 5 (the migration of
adaptations is very unlikely)

5 (the migration of
adaptations is very
unlikely)

4 (extension of patterns unlikely
but possible)

2 (the migration after testing
is promised by the developer)

10 3 (there are estimated 7
institutes they are using the
system)

2 (the system widely
distributed with RWI
robots)

1 (Many European laboratories
participate in the discussions and
design)

4 (there are 4 institutes so
far they are using the system)

11 4 (the system is ACE-Based) 2 (the system is based on
TAO “The Ace Orb”)

2 (there are independent
patterns so far)

1 (the system is based on
ORBacus 4.x, which is a free
available CORBA
implementation for no
commercial use)

12 5 (there is no evaluation
version available up to now)

2 (FORTH has experience
with the system. But there
is no evaluation version
available)

(the system is not existing yet) 1 (PROFACTOR and ACIN
have experience with the
system)

13 3 (in principle are parts open
source. Evaluation version
not yet available)

5 (no version available) 1 (the plan is to make the
system open source)

2 (the sources are available
at PROFACTOR. There are
plans to make it open source)

14 3 (there is a wide support of
vision modules)

3 (support for all kinds of
sensors)

2 (support for vision modules is
estimated)

2 (optimised on multi-cue
systems with ring-buffer
concepts)

15 3 (the good patterns are
usable for robotic modules.
Currently only mobile robots
are tested)

3 (robotic functionality is
mostly supported for RWI
robots)

1 (very well elaborated patterns
for robotic modules)

4 (the supported functionality
is mostly for mobile robots.
The usability for manipulators
is tested)

16 1 (a wide variety of
functionality is provided)

2 (a wide variety of
functionality is provided)

1 (it is planed to provide a wide
variety of functionality)

4 (mostly functionality for
communication is provided)

17 2 (The communication
functionality is very useful)

3 (communication
functionality is not very well
supported)

1 (it is planed the provide very
useful functionality for robotic
systems)

2 (The easy communication
functionality is very useful)

Table 2

 32

Conclusion: OROCOS and MOBILITY are not available (within the early period of WP1, or
at all) and therefore cannot be considered. However, due to the expected impact OROCOS
should be observed. SMARTSOFT is based on ACE, and availability is very limited.
OSCAR is with limitations usable, easy to use, based on CORBA, and will incorporate
Cognitive-Vision-Framework’s specific parts developed in ActIPret after testing. Therefore,
OSCAR is chosen. Free licenses of OSCAR are available for the ActIPret and OSCAR will
be made open source next. For safety of future investments, the following improvements are
suggested:
1. Increased efforts for documentation
2. Interfacing to OROCOS Framework as soon as available

4.4.2 Hardware
The Demonstrator will be build up based on 4 AMTEC Manipulators or Pan-Tilt Units with 3-6
DOF. The manipulators will be controlled via a CORBA interface developed at PROFACTOR
which communicates with a Real-Time Robot-Controller.
The manipulators carry stereo-pairs or triples of ieee1394 cameras. SONY DWF500L zoom-
lens cameras will be used for the manipulators, Basler A320f cameras with fixed-focus
lenses are considered for the pan-tilt units.
Scenarios, example videos (Profactor):
Two example videos for the scenario insertion of a CD in a player have been logged so far.
The videos are taken with verging, but non-moving Pan-Tilt-Unit for varying view on the CD
player and operator with changing starting scenario. Next example videos will be made with
moving camera-system as soon as a first framework-version is available that allows
synchronised data logging of video-data and camera poses.

4.4.3 References
1. R. Lumia, J. Fiala, A. Wavering, "The NASREM Robot Control System Standard,"

Robotics & Computer-Integrated Manufacturing, Vol 6, N 4, 1989, pp 303-308.
2. Konolige, K. and K. Myers. "The Saphira Architecture for Autonomous Mobile

Robots," www.ai.sri.com/~konolige/saphira/
3. M. Lindström, A. Orebäck, und H. Christensen, “Berra: A research architecture for

service robots,'' in Intl. Conf. on Robotics and Automation (Khatib, ed.), vol. 4, (San
Francisco), pp. 3278-3283, IEEE, Mai 2000.

4. J. Rosenblatt, DAMN: A Distributed Architecture for Mobile Navigation, doctoral
dissertation, tech. report CMU-RI-TR-97-01, Robotics Institute, Carnegie Mellon
University, January 1997.

5. B. B. Werger, "Ayllu: Distributed port-arbitrated behavior-based control," in
Proceedings of Distributed Autonomous Robot Systems 2000, Springer Verlag,
(Knoxville, TN), October 2000.

6. Sun Microsystems, Inc., “RPC: Remote Procedure Call Protocol Specification,”
Version 2, RFC 1057, June 1988.

7. D. C. Schmidt, “ACE: an Object-Oriented Framework for Developing Distributed
Applications,” in Proceedings of the 6th USENIX C++ Technical Conference,
(Cambridge, Massachusetts), USENIX Association, April 1994.

 33

8. Schmidt, D., "An Architectural Overview of the ACE Framework: A Case Study of
Successful Platform Systems Software Reuse", USENIX Login Magazine, Tools
Special Issue, November 1998.

9. Object Management Group, “The Common Object Request Broker: Architecture and
Specification,” Revision 2.6, December 2001.

10. The Object Management Group home page. http://www.omg.com/
11. iRobot Corporation: Real World Interface. http://www.irobot.com/rwi/p10.asp
12. C. Schlegel, R. Wörz, “The Software Framework SmartSoft for Implementing

Sensorimotor Systems,” IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS '99 1610-1616, Kyongju, Korea, October 1999.

13. C. Schlegel, “Communication Patterns for OROCOS, Hints, Remarks, Specification,”
Draft Version 0.11, January 2002.

14. S. Blum, “OSCAR - Eine Systemarchitektur für den autonomen, mobilen Roboter
MARVIN,” In Autonome Mobile Systeme, Informatik aktuell, pages 218-230. Springer-
Verlag, November 2000.

---END OF DOCUMENT -----

 34

	Draft of Design Concept of the Cognitive Vision (CV) Framework
	Final Version
	2 May 2002
	Introduction
	Principles and requirements of Cognitive Vision
	Memory
	Learning
	Control
	Reasoning

	Cognitive Vision framework
	Belief values
	Attention control
	Learning of behavioural models
	Software framework for Cognitive Vision
	Related work
	Goals
	Design decisions
	Design principles
	Component structure
	Resource management and service selection
	Management of models

	Realisation of principles and requirements of Cognitive Vision

	ActIPret demonstrator
	How the user interacts with the ActIPret demonstrator
	AD functional phases
	AD conceptual language
	Our approach to building the first AD

	AD System Structure
	Example set-up for expert mode

	Description of components
	Service list (ACIN)
	User HMI (COGS)
	Activity planner (COGS)
	Activity reasoning engine (COGS)
	Gesture recogniser (COGS)
	Object relationship generator (ACIN)
	Service list with view controller (Profactor)
	Hand detector and tracker (FORTH)
	Object detector and tracker (ACIN)
	Object recogniser (CMP)
	Hand recogniser (FORTH)
	Motion detector (FORTH)
	Ellipse detector (CMP + ACIN)
	Image server (camera) (Profactor)
	Pose server (Profactor)
	CPU controller (Profactor)
	Scene modelling for visualisation (CMP)

	Framework tool selection
	The tools for the framework
	Hardware
	References

