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1 Introduction 
This deliverable document provides the first complete overview of the Cognitive Vision (CV) 
framework. It summarises the work thus far under Task 1.1 (Conception and Interface 
Definitions). This CV framework is one of the two main deliverables of ActIPret, the second 
being the development of purposive processing and interpretation techniques according to 
this framework. 
Section 2 describes the basic principles and requirements for CV. These principles represent 
a generic CV framework and are not limited in scope to ActIPret only.  
Section 3 describes the goals, key design decisions and principles for an effective 
implementation of the general framework, and presents the basic implementation 
components and how they are managed and selected. Finally, we summarise how this 
generic CV Framework is intended to realise the challenges presented by the CV approach. 
Our goal is that this generic framework can be re-used by the wider cognitive vision 
community. 
The specific application of the generic framework within ActIPret is described in Section 4. 
First the intended operation of the ActIPret Demonstrator (AD) is outlined. Second, we 
describe the envisaged components and the component structure of the framework for the 
AD. Third, a short description of each component is given. And finally, options for tools to 
implement the framework are presented together with an evaluation leading to the selection 
of the OSCAR tool. 
There are three Appendices to this main document: 

�� Appendix A: detailed function specifications for all the components; 

�� Appendix B: IDL (Interface Description Language) definitions that specify the 
interfaces of each component; and 

�� Appendix C:  a glossary of terms used within ActIPret. 
Three other deliverables are presented contemporaneously with this one. These 3 other 
documents describe in more detail work on specific methods to be used within components 
of the AD framework: 

�� D3.1: describes the methods of establishing relations between one or more objects; 

�� D4.1: describes the approach to recognition of objects; and 

�� D6.1: describes methods of attentive behaviours. 
The interfaces definitions for the components described in D3.1, D4.1 and D6.1 are also in 
Appendix B. This appendix will be a working document throughout the project. 
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2 Principles and requirements of Cognitive Vision 
The development of a systematic methodology for the design, implementation and 
integration of Cognitive Vision (CV) systems is currently a very important research problem 
and has its roots in early proposals for active vision. Cognitive vision is concerned with the 
purpose and behaviour of computer vision systems in the context of their goal-oriented 
activity (from ECVision). Essential elements of a CV system are: 
 

�� memory: representations of objects, categories, actions, behaviours, etc.; 
�� learning: of task relevant representations and how to use them; 
�� control: both selective visual processing and active control of viewing geometry; and 
�� reasoning: about representations and events/activity for system decisions/actions. 

2.1 Memory 
A CV system needs to be capable of representing and storing (cf. memory) data about task 
relevant objects and behaviours. Such representation schema need to reflect the 
requirements of the vision task. Traditional approaches to representation tend to focus on 
hand-crafted schema that have little generality outside of their specific application. 
Representations for CV applications reflect whether a task is concerned with categorisation 
(requiring generalised representations capable of supporting decisions such as “some type of 
car”) or recognition and identification (capable of deciding “this particular instance of car”). 
Different levels of task abstraction require different types of representation schema and a CV 
system needs to be able to choose the most appropriate for any particular task. 
Representations may be organised into hierarchical systems such that specific schema can 
be derived from more generic ones. 
A CV system also needs a consistent method for representing belief. Different pieces of 
knowledge may arise from different levels of abstraction of a task, but it is necessary to 
combine these into a single coherent interpretation of a scenario. For example, in a scenario 
where we are looking for a particular car in a scene (say “blue estate car with a given 
registration number”), we may first use a generic level of abstraction to look for a particular 
type of class (say “an estate car”). This level of task abstraction (categorisation) returns a 
number of different candidates each with a certain level of belief. We might then use a 
specific representation to find which member of that candidate set is the specific car we are 
interested in. This process involves taking a prior level of belief and revising it on the basis of 
a more specific level of task abstraction (identification). 

2.2 Learning 
A CV system needs to be capable of acquiring and modifying representation schema such as 
those described in the previous Section based on experience (training). For ActIPret, this 
may take the form of off-line learning (supervised or unsupervised) or through adaptation 
(both through reactive planning implemented in the form of task based control structures and 
through statistical revision of belief) during run-time. The purpose of learning is to maximise 
the representation schema to be maximally task relevant. For example, for a categorisation 
task, if we have only ever observed “blue cars” we might suspect that “blueness” is a generic 
property of cars. The subsequent existence of a single instance of a “red car” causes us to 
revise our categorisation procedure and deduce that “blue” is a specific property that can 
apply to a car (relevant for an identification task) but is not a generic property. 
Learning in a vision system can be at the level of: 
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�� object models; 
�� their movements and actions (behavioural models); and  
�� how to control views and processing in the system.  

 
Objects can be recognised at different levels of abstraction, general categories such as 
“face” and “car” or more specific categories such as “estate car” or “familiar face”. At the 
most specific level, there is identification where a unique instance such as “my face” or “my 
car” is recognised. The learning of behavioural or activity models is concerned with 
acquisition of structure for movements and actions. Activity models can be associated, in 
general, with “action verbs” such as “grasping”, “picking up” and so on. Activity models can 
be constructed in terms of actions, activities and events. 
In addition to object and behaviour recognition, expected behaviour can be used to control 
further processing in the system through prediction. Many different learning and prediction 
techniques have been proposed including, for example, symbolic learning using case based 
reasoning, graphical models for probabilistic reasoning and control, stochastic models for 
learning and prediction in tracking, deformable models for event analysis and neural network 
learning in gesture recognition. 

2.3 Control 
The ActIPret project focuses on understanding activity in dynamic scenes, which leads us to 
expand on the theme of control in that: 

�� perception is guided by expectation, i.e. we “see as” in the famous words of Max 
Clowes; and 

�� this expectation is purposeful, i.e. we “see for” a particular decision or action. 
In particular, this means that understanding visual behaviour must take place not only in the 
context of what is known about the dynamic scene but also in the context of the observer’s 
task. The first implies the use of conceptual knowledge, i.e. hand built or learned models in a 
readily accessible form, and the second implies active control of the visual processing, i.e. 
selective attention of some kind (overt/covert) for real time processing of dynamic scenes.  
In control structure terms, ActIPret is task driven. At the most abstract level, we use rules to 
guide our expectation associated with the current vision task. These rules are embodied in 
the form of a control policy. At the different levels of the system appropriate knowledge 
arising from the control policy will constrain the processing. Our expectations are defined in 
the context of the chosen scenario (encapsulated in our conceptual language) so our control 
policy can capture this sense of purpose. 
In vision terms, ActIPret can be viewed as reactive (bottom up) processing limited in scope 
by task driven (top down) control and constrained by task driven knowledge. 

2.4 Reasoning 
A CV system must be capable of using the knowledge encapsulated using its representation 
schema to guide the processing based on expectation (control) and to provide the user with 
task relevant explanations of derived inferences. 
More specifically, the building of sequences of actions, activities, events and object and 
behavioural models using the various representation schema within ActIPret is synonymous 
with the synthesis of an activity plan (“activity planning”) for the scenario as demonstrated by 
the expert. The scenario is demonstrated to ActIPret as exemplars. These exemplars may 
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have end-to-end significance or the expert may choose to structure them in a hierarchical 
fashion. Where the expert structures the exemplars in a hierarchical fashion, the result is a 
hierarchical activity plan with embedded learned sequence models (refer to the paper on 
learning of models). Exemplars of the plan are represented in the conceptual language.  
The conceptual language in general consists of: 

�� the declarative semantics of the task – information about objects referred to during 
the description of the task and expected behavioural models for these objects; 

�� sequences of plan concept functions (atomic plan primitives) organised as a mixture 
of exemplars with end-to-end significance or organised into a hierarchical structure;  

�� specific behaviour models for activities, actions or events observed in the exemplars 
and derived from abstract models defined within the activity reasoning engine (see 
the paper on learning models for more details); and 

�� a limited amount of domain specific data, outside the scope of generalised models, 
contained in the activity reasoning engine, necessary for the correct interpretation of 
the scenario. Examples of such domain knowledge include prior state variables to 
represent very specific aspects of the state of functions on a CD player. 
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3 Cognitive Vision framework 
Building on the themes presented in Section 2, we now extend the definitions of the core 
functions of cognitive vision, that is the belief values, attention control and learning, for use 
within the context of a general Cognitive Vision (CV) framework. We then develop this 
general framework into a specific one for an ActIPret demonstrator system in Section 4. 

3.1 Belief values 
The reasoning engine needs to ensure that service requests to lower components are made 
in the most effective manner to facilitate detection and recognition of behavioural patterns. 
Any system of reasoning needs a mechanism to measure its belief in the knowledge that it 
holds (whether prior or posterior). This mechanism is the belief system and various 
underlying models exist to support such belief in a useful and natural manner (for example, 
probability theory, Dempster Shafer theory and fuzzy logic). The belief system defines a 
system of belief values that can be used to determine truth (whether binary logic e.g. this 
predicate is true/false with a given belief, or continuous e.g. this predicate is 70% true / false) 
or relevance (e.g. this rule is appropriate to apply in this case),   
For example, the ActIPret reasoning engine component models the validity of any plan 
hypothesis generated using a probabilistic belief measure. This measure of belief, combined 
with information on computational costs and other metrics are used to determine the most 
effective order and distribution of visual processing tasks throughout the lower level 
components. 
For the ActIPret framework overall, the standard measure of belief is a continuous function in 
the interval [0,1]. Furthermore, the belief function b for any given hypothesis hi in any of the 
system components falls into one of 3 generic bands: 
 

�� 0 � b(hi) < x1 : very low (“irrelevant”). This level represents a minimum threshold for 
the component to maintain the hypothesis (for example, as proposed to the reasoning 
engine by the object relation generator) and to warrant expenditure of computational 
resources in attentive processing. Any hypothesis whose belief function falls beneath 
this threshold for any significant period will be removed (garbage collection). Any 
processing that was being performed by lower level components in support of that 
hypothesis would usually be terminated.  

�� x1 � b(hi) < x2 : worth maintaining and investigating further (“promising”). The initial 
attainment of a belief value in this level corresponds to the notion of detection. When 
a hypothesis emerges with a belief function that exceeds the minimum threshold, we 
make service requests of lower level components in order to recover further evidence 
that either supports or refutes the hypothesis (increasing or decreasing its belief 
function). The type of service requests (in terms of computational costs and quality of 
service) will depend on the current utility of the concept for the behavioural task. 

��  x2 � b(hi):  very high (“confirmed”). This level of belief corresponds to the notion of 
recognition. At this point there is sufficient evidence to regard the hypothesis as “true” 
(an established concept). This band has a specific further semantics in the case of 
the activity reasoning engine where attainment of the band will: 

instantiate a concept function ci from hi (i.e. after instantiation, system decision 
means concept is treated as fact -no longer has semantics of a belief value); 
and/or 

��

�� cause a change in the internal state of the reasoning engine (i.e. the concept 
represents a causal change in control policy such as “revoke rule X”, action). 
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Rules within each component define the belief value thresholds x1 and x2 for any given 
hypothesis. The values of x1 and x2 may be independent for any given hypothesis function hi, 
and could be adaptive. 
Belief values may also be eroded as a function of time. This is a useful method for the 
garbage collection of tentative hypotheses that were short-term transients but for which it 
was not possible to gather further and sufficient evidence. 

3.2 Attention control 
A key element of the ActIPret CV framework is the notional separation of "pre-attentive" and 
"attentive" vision tasks to allow us to focus intensive processing where it is required. This 
separation underlines the importance of control and reasoning in selecting the focus of 
attention. We have extended the concept of a binary separation of pre-attentive and attentive 
vision into a continuum between the two based on measures of computational cost and 
quality of service (pre-attentive vision corresponds to low computational cost and potentially 
low quality of service, and attentive vision to high computational cost and quality of service). 
Attentive processing is then a continuum of visual services. These services are defined in 
terms of their computational cost and quality of service. The highest level of control is a 
function of the activity reasoning engine. This reasoning engine makes task relevant 
decisions about which visual services should be requested. Using notation from Section 3.1, 
attentive control for any component arises from the middle band of belief values (x1 � b(hi) < 
x2) for any given hypothesis hi. The control mechanism is a functional loop within a 
component that attempts to continuously revise the belief in a given hypothesis until it either 
falls below a threshold x1 and is discarded, or rises above a threshold x2. 
Other attention control issues that need to be addressed include: 
 

�� representation of the rule set within the control policy; 

�� some hypotheses are not intended to become concept functions, simply to influence 
selection within local control policy (maybe changing camera viewpoint or tutoring);  

�� send service requests on a per cycle basis or less frequently, depending on task 
relevance, computational cost and quality of service parameters; and 

�� how the values of x1 and x2 are set for each member of the hypothesis set. 
 
Services that require particular views (and therefore can influence the motion of the robots) 
may conflict for resources or may create situations that ‘demand’ unsafe motion for the 
robots. Therefore, the service commanding/coordination/control structures must be 
performed with an intrinsic knowledge of views, kinematics/capabilities of the robots. This 
requires a reactive co-ordination that activates/de-activates these modules according to the 
demands of the service requests and this intrinsic knowledge.  This coordination, combined 
with the view-request of the service-modules that specifies views according to their current 
processing, form the base of the attention control. The services/modules, developed in 
WP 1-5 are co-ordinated according to their requirements (if any) of quality of service and 
costs, and the available system resources (mainly robots).  
Therefore, highly reactive co-ordination modules interact with these modules at each 
processing-cycle to ‘direct’ the camera/robot entities (evaluating, starting and stopping the 
individual services). In order to improve the overall performance, of the system, the local co-
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ordination modules communicate with a central "contract manager" module, which performs 
task-assignment. For details see Deliverable 6.1.  

3.3 Learning of behavioural models 
For ActIPret, there are two types of relevant learning that take place in the learning phase: 
 

�� learning of general activity models (described by “action verbs”) such as “open the 
CD player”; and 

�� learning of general object models for object detection and recognition such as “CD” 
and “CD player”. 

  
There are several different types of behavioural activity model: 
 

�� Abstract models (parametric, but without specific values): such as "pushing a 
button". Abstract models are defined by vision based activity descriptions.  For the 
“pushing a button example” the abstract model might be defined, for example, by 
requiring minimum distance and persistence parameters. 

�� Specific models (parametric and with instantiated values): derived from the abstract 
ones. These specific models (or at least their parameters) would be embedded within 
an instantiated ‘activity plan’. For example, the model for finger pushing the play 
button on a CD player might be derived of the previous “pushing a button” abstract 
model by setting a minimum distance of 5cm and a persistence time of 5 seconds. 

�� Learned sequences (part/whole of activity plan): specific activity primitives combined 
into higher-level (more abstract) activity descriptions. For example, the learned 
sequence model of "opening the CD player" would consist of alternative sequences of 
activity primitives based on exemplars.  

�� Hand-coded models: when there is no intention to learn given aspects of the model. 
The use of Hand-coded models should be a last resort but may be important where 
we want to capture highly specific activities or events that cannot be determined 
readily by vision alone (for example, recognising that a music is coming out of a CD 
player). Hand-coded models can receive external non-vision triggers to determine 
their state. 

3.4 Software framework for Cognitive Vision 
One of the goals of ActIPret is to develop a general purpose framework for CV, that can be 
used not only for the ActIPret demonstrator but also in other CV applications, other vision 
systems or even vision and robotics systems. In this Section we describe: 
 

�� related work relevant for framework design 

�� the goals for such a software framework; 

�� the design decisions to realise the framework; 

�� two particular principles the framework builds on (the ‘service principle’ and the 
‘hierarchy principle’); 
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�� the structure of the individual components; and 

�� the mechanism to manage resources and to select components.  

3.4.1 Related work  
Throughout the course of computer vision as a research topic, much effort has been applied 
to the transfer of ideas and results into practical vision systems [1]. Since 1999 the dedicated 
Conference on Computer Vision Systems (ICVS) has provided a valuable platform for this 
effort. But still there is a big gap between theoretical algorithms and commercially available 
vision component products. In the sense of component-based system programming (as seen 
from a programming perspective [2]) CV systems can also be built around many ‘basic’ 
vision components like object recognition or active tracking. Hence developments in building 
general component-based vision systems are equally relevant for the software framework of 
a CV system. 
Besides a large number of application specific implementations of frameworks and 
architectures, there are generic frameworks designed to distribute and schedule ‘small’ 
subtasks like binary and basic pixel operations [3,4]. The fixed processing time of such basic 
operations and the pre-defined pipes and filter dataflow means that a static scheduling can 
be calculated in advance. Here the main goals are the efficient distribution on different 
HARDWARE like DSPs or FPGAs and the assurance of real-time constraints. 
From a perspective of frameworks and architectural guidelines for vision components of the 
typical vision component size (more closely related to component-based system 
programming), the field of autonomous robotic is of relevance. Some of the robotic systems 
using vision components are described in [5-11]. All of them provide mechanisms to 
configure a system set-up during compile or start-up time. But no real dynamic component 
selection and activation is permitted.  
Probably the most relevant work is the OROCOS project (www.orocos.org) that aims to 
develop a common basic framework for developing robot control software. OROCOS  
designs and implements (among many more) some of the principles for robotic control, which 
are also of relevance to perceptual requirements (e.g. coordination, reactive behaviour [12-
13]). For example, we reused some of the basic communication patterns from OROCOS for 
the IDL-description. However, OROCOS only started in September 2001 and it is not 
expected that implementation results can be exploited before end of 2002. Related tools to 
develop frameworks are discussed and evaluated in Section 4.4.  
 
[1] W. Förstner: “10 pros and cons against performance characterization of vision 

algorithms”; Workshop on "Performance characteristics of vision algorithms", 
Cambridge, 1996. 

[2] C. Szyperski: “Component software”; Addison Wesley; United Kingdom 1999 
[3] F. Torres, et al; “Simulation and scheduling of real-time computer vision algorithms”; 

ICVS 99. 
[4] D. Benitez, J. Cabrera: “Reactive computer vision system with reconfigurable 

architecture”; ICVS 99. 
[5] J.S. Albus; 4-D/RCS: “A reference model architecture for Demo III”; IEEE 

ISIC/CIRA/ISAS Joint Conf.; Sept 1998. 
[6] M. Anderson, A. Orebäck, M. Lindstöm, H. I. Christensen: “ISR: An intelligent service 

robot”; in ``Intelligent Sensor Based Robotics'', Eds: Christensen, Bunke, and 
Noltemeier, Lecture notes in Artificial Intelligence, Springer Verlag, 1999. 
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[7] Stefan Blum: „OSCAR - Eine systemarchitektur für den autonomen, mobilen roboter 
MARVIN“; In Autonome mobile systeme, informatik aktuell, pages 218-230. Springer-
Verlag, November 2000. 

[8] R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand: “An architecture for autonomy”; 
IJRR Vol. 17, pp 315-337, April 1998. 

[9] J. Cabrera-Gamez, A.C. Dominguez-Brito, D. Hernandez-Sosa; “CoolBOT: A 
component-orientated programming framework for robotics”; Dagstuhl seminar 00421, 
Springer-Verlag Lecture notes in computer science, 2001. 

[10] P. Steinhaus, M. Ehrenmann, R. Dillmann; “MEPHISTO A nodular and extensible path 
planning system using observation”; ICVS 99. 

[11] O. Stasse, Y. Kuniyoshi: ``PredN: “Achieving efficiency and code re-usability in a 
programming system for complex robotic applications”; ICRA 2000. 

[12] R.C. Arkin: “Behaviour based robotics”; The MIT Press 1998. 
[13] R. A. Brooks: “A robust layered control system for a mobile robot”; IEEE Journal of 

robotics and automation, Vol. 2, No. 1, pp.14–23, March 1986. 

3.4.2 Goals 
This section summarises the important design goals. Besides the needs and principles of 
cognitive vision (see Section 2), there are several goals that refer to general principles of a 
framework: 

�� Task driven (pro-active): as described in Section 2.3 the ActIPret system has to 
deal with limited resources. Hence the system has to focus its resources (processing 
power, views etc.) according to task relevancy. 

�� Data driven (re-active): the system has to react to the sensor input provided by the 
cameras. The goal is to build a CV system that reacts and responds to human 
actions. Hence reactions must take place in a time scale appropriate to the natural 
speed of action of humans 

�� Scalability: should be linear or as close as possible to linear. In practice this means 
that duplication of any component should result in (as near as possible) duplication of 
the associated service assuming the existence of similarly duplicated resources.  

�� Control: scalability also implies distributed control throughout the system (a single 
control component would not scale). Hence, each component has its own "control 
policy" (albeit at different scales of task relevance) to control the services requested 
and the results or data obtained. 

�� Modularity: the development effort for CV software can be limited by reusing 
software segments. Modularity forms the basis for software reuse and a dynamic 
system structure. 

�� Independence of components: whichever component requests a service should 
receive the response. Hence every component has the control of the services it 
provides to other components and the services it requests from other components.  

3.4.3 Design decisions 

�� The system is distributed: vision and interpretation require huge computations. In 
order to achieve scalability and parallel development the components should be 
distributed. Consequently resource management should be distributed too. 
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�� The components of the framework run asynchronously: the effort required to 
synchronise a distributed system is too big related to the simplification reached in the 
integration process. In particular, synchronisation is pointless for components having 
different temporal behaviours such as tracking and recognition. 

�� Data consistency: control over service responses from other components requires 
assuring that the data received is made consistent. For example, if two detectors on 
different cameras are asked to find a hand, the responses must be fused in the 
component that requested these two services. 

�� Number of resources: the number of resource types in a generic system can be 
very high. However for CV systems this number is of the order of 3. For example, in 
the ActIPret demonstrator there is the CPU time and the realisable view together with 
the image delivery. Hence, for CV systems the number of resources a component 
can request is small. 

3.4.4 Design principles 
The framework is built according to two major design principles derived from the list of goals 
and based on the design decisions. 
The ‘service principle’ 
Our first goal for the CV framework is to build a task driven system and so every distributed 
component is task driven. From the point of view of a component, it has to provide one or 
more interfaces to make its functionality accessible. Using this interface other components 
can initiate one or more tasks. Components can be regarded as black boxes and so 
according to the goal of component independence these interfaces have to describe all the 
abilities of the component. These interfaces are called services and the component acts as 
the service provider. 
Any component can use the services of other components. In this case the component acts 
as the service requester. So every component ‘presents’ its abilities by providing services 
and every component makes use of the abilities of other components by requesting services. 
These services form the complete interface for a component and hide the implementation. 
A special component, called the service list, provides the mechanism for any components to 
find out about the services that other components provide. This mechanism operates as 
follows: Every component registers its services in the service list. Using the service list as a 
‘yellow pages’ directory for services, a component can find on-line the services it requires 
and can then establish communications with the relevant component(s). 
In order to provide a simple service selection the service list entry consists of the service 
name, some service specific properties (describing the service in more detail) and an 
abstract description of the abilities of the component. This abstract description contains two 
main descriptors: 
 

�� Quality of Service (QoS): describes performance (confidence, accuracy, speed etc.) 
a service can actually (when registering/updating the entry in the service list) deliver; 
and 

�� Costs: abstract descriptions of the effort required to establish a service. This is used 
to quantise the narrowness of a resource and the conflicts (incompatibility) of 
resource requests. For example, the effort to transfer a running component from one 
PC to another PC (i.e. to get more CPU time on that PC) is embodied by migration 
costs. 
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Several other descriptors are possible, for example, constraints related to a service. However 
these two descriptors (QoS and cost) are the minimum and will be used and implemented for 
all components. 
To cope with limited resources (see Section 3.4.6 on resource management below) it is 
necessary to introduce a priority descriptor to quantify the need of the component 
requesting the service: This is set by the component requesting the service to inform 
resolution of conflicts between service requests. 
These three abstract descriptors (QoS, costs, priority) provide a mechanism to support a 
distributed system and a dynamic system set-up. They support the overall goals of scalability 
and modularity and should provide a reliable system that is able to react online to the failure 
of a component or to the introduction of a new component. 
The ‘hierarchy principle’ 
Fully agent-based systems do not use a hierarchy. All agents negotiate until a configuration 
is reached. This is thought too time consuming for a reactive system. To reduce 
administrative communication overheads during decision-making (service selection) a strict 
hierarchical structure of components is used. Hence every link between components has a 
higher-level component and a lower-level component. The higher-level component always 
orders the task (service) the lower-level component has to process (provide/deliver).  

3.4.5 Component structure 
Using these two principles a component can be separated into three parts. In the main part 
of the component the real functionality is placed. This part is encapsulated by two interfaces. 
The top interface provides the services of the component itself and the bottom interface 
requests services from other components. The example in Figure 1 shows an object 
recognition component that provides three specific object recognition services: identification, 
detection and search of/for objects. The service provider interface configures the 
component for the requested task and is responsible for the communication with the 
requesting component. The service requester interface is responsible for the selection, 
configuration and management of services requested by the main part of the component. All 
communications to lower level components are realised through this interface. 
 

Object Recognition

Service1
Identify

Service 2
Detect

Service 3
Search

Service provider
Interface

Component

Service requester
Interface

(Output)
side

(Input)
sideInput Selection

 
Figure 1: Component structure. 

 
The framework makes use of two types of component: 
 

�� Main Components (MC): are the workhorses of the system. All necessary visual 
computation and task control (excluding the effects of resource constraints) decisions 
of the system are placed inside MCs. Typical MCs for a CV system include: object 

 14



recogniser, feature tracker and reasoning engines. MCs register their services in the 
service list and are able to select services of other components. 

�� Controller Components (CC): represent resources inside the system. It is not 
important if the real actuator driver is part of the CC or if the CC is just a gateway to 
the real driver. Typical CCs for a CV system include are view controller (for 
establishing camera poses, change focus, cutter etc.) or CPU controller. 

3.4.6 Resource management and service selection 
Use of the ‘service principle’ presents a major challenge in that vision systems have to deal 
with restricted resources. There is always a limited amount of CPU power, only a limited 
number of cameras and the free working space of the robots used to get good viewpoints is 
constrained. Therefore access to resources must be managed to solve conflicting resource 
needs. 
In order to optimise resource allocation, it is necessary to manage the components that raise 
the resource requests. Otherwise components might be activated that have little or no 
probability of obtaining the necessary resources. For example, to start a component on a PC 
with nearly zero available CPU time makes little sense. Hence every component (or, more 
precisely, its abstract representation the service) has to be managed, because of the 
restricted and conflicting resources it requires. 
Using the component example in Figure 1 the method of selecting a service is the critical 
issue. Service selection serves the purpose of selecting resources efficiently. Therefore it 
has the goal of implementing and resolving resource management. The mechanism 
introduced here is distributed and based on the CORBA trader service (or a derived method), 
defined by the OMG (Object Management Group www.omg.org). Figure 2 gives an example 
sequence for the set-up of a component connection. 
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B
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C

Component  IV

Service A

Component  III

Service
A

Service
B

Serv. Comp.    Description
A III         QoS, Costs, Constraints, ...
A IV         QoS, Costs, Constraints,...
B III         QoS, Costs, Constraints,...
B V         QoS, Costs, Constraints,...
C V         QoS, Costs, Constraints,...
.
.
.
.

Service List

(3) ask for A

(3) III, Perf., ..
     IV, Perf., ..

(4) configure

(4) main data flow

(1) export B

(1) export A

(2) need A

 

Figure 2: Selection and configuration of a service. Numbers (i) correspond to the item 
numbers in the text. Not all messages/arrows are shown. 

 
The following items describes the sequence for registering a service in the service list and 
selecting the service(s) requested (item numbers correspond to numbers in Figure 2): 
1. During the component start-up, every component registers its services in a global service 

list. In CORBA terms this is the export of a service offer (this start-up does not have to be 
at the same time as the system start-up!) A service list entry consists of the service 
name, the ID of the component providing the service and an abstract description of the 
service (i.e. quality of service QoS, costs, constraints, etc.). This entry is updated only if 
major changes of the component description occur. 

2. If a component needs a service, it asks its service requester interface to establish a 
connection. From this point in time the main component part, where the real functionality 
is placed, is decoupled from the mechanism to set-up the connection. All selection, 
configuration and communication is done by the service request interface (see Figure 1). 

3. The service requester interface starts the search for a service in the service list (it asks 
for service "A" in Figure 2). In CORBA terms this is known as an import. The component 
description (QoS, costs, etc.) makes it possible to select the relevant subset of all 
components providing the service "A". The service list returns the list of corresponding 
service offers (in our example, for components III and IV). 

4. The service requester interface selects one of the service offers received and initialises 
an OSCAR link to the selected component (in fact, to its service provider interface). This 
completes the process to find the service requested. 
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The component that delivers the service is responsible for generating and updating these 
values in the service list. Especially, QoS and costs depend on available resources. The 
necessary information on resources required to calculate QoS and costs is received from the 
relevant controller components (CC). This process is referred to as resource management.  

3.4.7 Management of models 
This Section applies to task based behavioural models at the highest level of abstraction 
such as those described in Section 3.3, but also to the use of models more generally (e.g. 
object models) in computations throughout all of the ActIPret components. 
Different components will need access to different model types in order to perform their 
characteristic operations. Each component only supports a limited number of model types. A 
Support Vector Machine (SVM) based recogniser will need a SVM model; a Principal 
Components Analysis (PCA) based recogniser will need a PCA model; a Hidden Markov 
Model (HMM) based behaviour analyser; and the ACIN detect and tracking component 
requires a wire frame model. The component selection mechanism of the service principle 
has to ensure that components selected for a task can access models of the object of a 
supported model type. 
Consider the situation for object recognition: The component selection is model type specific 
e.g. PCA model for the PCA recogniser. The model type is itself object specific e.g. if we 
have a PCA model of a CD player. However, the object is not known before the real service 
request is generated. Hence from the software framework point of view, model data behaves 
like a varying resource. 
One brute force method to solve this problem would be to ask every component if it can 
detect (recognise, track, etc.) the object. Most would answer that they cannot detect the 
object because of missing model data of the type required. 
Hence we suggest implementing the following method for managing model data (i.e 
managing the model data constraint for selecting components): 

1. There are one or more model server(s). Model server(s) contain either the model 
data themselves (especially for common model types) or have reference entries to 
model data that is component specific and hence placed in the component itself (e.g. 
SVM model data is placed in the SVM recogniser component). 

2. Every model data dependent component adds the supported model data types to the 
service description in the service list. 

3. At the first step of component selection, the service requester evaluates the available 
model data types for the object to be computed. It receives this information from the 
model server. 

4. These model data types are then forwarded to the service list as part of the service 
request. 

5. At the service list this data is compared to the entries and appropriate selections can 
be made. 

 
This method is asymmetric compared to other selection constraints like the view or the CPU 
time, because the service requester has to take account of requirements from the service 
provider. But in principle the view can be handled by the same method. The service 
requester could ask all available cameras for the potential to realise a specific view and then 
forward this information to the service list, where every entry contains the cameras they can 
use. The main differences between the model data and the view are: 
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�� the number of cameras in the system is probably higher than model server(s) (just 
one for the initial demonstrator). Hence the communication overhead is higher; and 

�� the view that should be realised depends on the implemented method of the selected 
component. 

 
This method meets the goals for the software framework for CV. The restricted resources are 
still divided according to the actual tasks (according to task relevancy) in an adequate 
timeframe (not to lose important data - data driven). The method scales linearly (although the 
number of model servers is assumed to be small) (scalability) and supports dynamic and 
modular composition (modularity) of independent components (independence of 
components). 

3.5 Realisation of principles and requirements of Cognitive Vision 
This Section is intended to show how the generic framework solution presented realises the 
principles and requirement for a CV system (goal-orientation and control, reasoning, 
memory, learning) described in Sections 2. The AD framework proposed in Section 3.4 is a 
tool to implement these principles and requirements. 
The goal-orientated nature of CV is realised through the use of components that can 
dynamically select the components that are best suited to solve the immediate task. Whilst it 
seems that the major task-based control resides in upper level synthesis and reasoning, 
each component also provides task-based control for lower level processes. This control 
extends from selection of tracking or recognition right down to the selection of the most 
relevant views, cues or features. 
Task-directed control in each component is most powerful if each component also contains 
capabilities to reason about its local tasks and can therefore select appropriate processes. 
The belief values form the basis of the method to provide formal values for the reasoning 
process. This formalism enables handling of the results of external processing (from a 
service that has been requested) and of internal processing within the component itself 
(although we are aware that the nature of the belief values might differ substantially 
depending on the underlying methods used to obtain the belief values). The service principle 
realises distributed reasoning, such that knowledge available in each component can be best 
exploited in the current context. 
It should now be clear that memory (in particular what could be called short-term memory) 
also resides in each component, since it’s related to control and reasoning. Short-term 
memory denotes time varying data, e.g., the results of previous processing and reasoning 
steps, updates of states and parameters. To ensure that data coming from internal and 
external processes is consistent, it has to reside within the component. On the other hand, 
there are models in long-term memory (that can have different forms of representations), 
which persist over time, such as a model of an object or an activity. It is the ModelServer that 
ensures consistency of these models. 
The final aspect of CV considered here is learning. As will be seen later in Section 4, a 
separate “learning phase” is devoted to initialising the system components. Initially learning 
will take place at a component per component basis, e.g. learning to detect hand motions, 
learning of belief networks for activity interpretation or learning representations for 
recognition. This learning can be done fully off-line (the component alone) as well as with 
several components providing the input for learning. For example, hand tracking providing 
the input for learning to discriminate hand gestures. It is finally foreseen that during the 
phase of interpreting new activities, the system could also learn, though in this case we 
should refer instead to ‘adaptation’ to a specific user.  
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Table 1 provides a summary of the essential items for realising the principles and 
requirements of CV: 
 

Principle Realisation 

Memory Long term memory: ModelServer (consistency of time invariant data) 
Short term memory: distributed to all components (consistency of actual 
data) 

Learning Distributed to all components: 

�� Initial learning phase (off-line, before system operates on its 
task) to learn activity as well as object models 

�� On-line learning phase (limited learning capabilities) 
Extension: learning between components 

Control Task-driven to focus processing and exploit resources efficiently 
Data-driven to obtain reactive system 
Reason about control using memory  

Reasoning Formalised services (QoS, costs) report belief values for reasoning 
Distributed to use local knowledge and to scale with complexity 

Table 1: Realisation of principles and requirements of Cognitive Vision. 

 
 

 19



4 ActIPret demonstrator  
The objective of ActIPret is to develop a vision methodology that interprets and records the 
activities of people handling tools. The tasks considered are observable by video streams. 
Focus is on active observation and interpretation of activities, on parsing the sequences into 
constituent behaviour elements, and on extracting the essential activities and their functional 
dependence. By providing this functionality ActIPret will enable observation of experts 
executing intricate tasks such as repairing machines and maintaining plants.  
The expert activities are interpreted and stored using natural language orientated 
expressions (encoded in a conceptual language) in an activity plan. The activity plan is an 
indexed manual in the form of 3-D reconstructed scenes, which can be replayed at any time 
and location to many users using, e.g., Augmented Reality equipment. Due to the interpretive 
level of the system, ActIPret can provide the trainee with feedback when repeating the 
operation (in simulation or reality), which results in a superior training effect compared to 
repetition without feedback. 
A demonstrator will be built to test the generic framework on this scenario. This specific 
example of a framework implementation is referred to as the ActIPret demonstrator (AD). 

4.1 How the user interacts with the ActIPret demonstrator  

4.1.1 AD functional phases 
There are 3 substantive functional phases for the AD: 

�� Learning phase: in this phase the AD relies on a teacher (as distinct from the expert) 
to provide supervised learning examples of activity and object models. For activity 
models, the system needs to derive specific models relevant to the scenario that the 
expert will demonstrate from the generic models built into the reasoning engine. For 
object models, the lower level vision components need to establish parameters for 
detection and recognition tasks based on supervised learning examples. 

�� Expert phase: in this phase the AD is shown the sequencing of plan primitives that 
make up scenario exemplars. This process is synonymous with activity plan 
synthesis. The learning phase must have already been carried out before we can use 
the expert phase. Expert phase learning may be incremental (take place in several 
sessions giving rise to multiple scenario exemplars) although we assume that for any 
scenario that the resulting activity plan contains no exemplar sequences prior to 
entering the expert mode for the first time. There are 2 elements to the expert phase: 

extraction of the linear exemplars; and ��

�� (as a further refinement) organisation and hierarchical grouping of  parts of the 
linear exemplars to highlight common elements of plan structure. This could 
be as simple as combining all of the linear exemplars or could include more 
sophisticated plan editing. 

Once all expert phase learning is complete, the activity plan is fully synthesised 
(represented in the conceptual language) and is stored in a static database. 

�� Tutor phase: in this phase the naïve user (the trainee) attempts to perform the 
sequencing of plan primitives. This phase is synonymous with both activity plan 
synthesis and comparison. The expert phase must have already been carried out 
before we can use the tutor phase. As a result, we have the activity plan as 
generated during the expert mode stored in a static database. This is the reference 
activity plan. There are then 2 elements to the tutor phase: 
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explanation of the content of the static database to the trainee. This can be 
achieved either through natural language based descriptions or through VR 
reconstruction; and 

��

�� plan synthesis that takes place to a separate transient workspace plan that is 
then stepwise compared with the exemplars in the static database. Variations 
between the temporary workspace plan and the static database represent 
errors in the trainee’s performance. 

The need for VR reconstruction within the tutor mode further creates a need for a more 
“complete” conceptual language. 
These 3 phases are visually summarised in Figure 3. 
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Figure 3: This diagram shows each of the 3 functional phases with their 
corresponding high level inputs and outputs 

4.1.2 AD conceptual language 
The activity plan is written in a conceptual language. A very simple activity plan might be 
represented as follows (using C++ derived notation – the conceptual language is not yet 
developed fully): 
 
// --------------------------------------------------------------------- 
// Using C++ notation (refer also to the paper on learning models …) 
 
linear_exemplar(1) { 

button_press(button0,cdplayer0); 
button_press(button1,cdplayer0); 
pick_up(cd0,nondef); 
put_down(cd0,cdplayer0); 
button_press1(button1,cdplayer0); 
button_press2(button2,cdplayer0); 
} 

 
button_press(button1, cdplayer0) : public button_press(b,object) { 
 // button_press(b,object) would be defined within the reasoning engine 
 minimum_distance = 10.0; 
 persistence_time = 5; 
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 } 
// --------------------------------------------------------------------- 

4.1.3 Our approach to building the first AD 
The initial thrust of the development work of the project will be in the iterative development of 
the expert phase. Development starts with very simple activities beginning from the basic set 
of objects for the CD scenario and the action verbs (grasp CD, move hand, CD-player,…) as 
suggested by COGS. 
It is our goal that objects are shown and learned before being used in activity interpretation. It 
is assumed that the intention of the expert is known. Hence objects and basic activities 
involved are known at the beginning.  

4.2 AD System Structure 
Figure 4 shows the overall structure of the ActIPret Demonstrator (AD). Three different types 
of process can be detected. The relationships of these processes mirror the hierarchical 
principle introduced in the previous section. The higher the data abstraction of the process 
output, the higher the level of the corresponding component in the AD diagram.  
The components are arranged in three main layers, Synthesis, Pre-Reasoning and Pre-
Attention and Attention. Each layer corresponds to a different level of data abstraction. Pre-
Attention & Attention groups all functions that produce as output object poses. Pre-
Reasoning computes temporal and spatial relations for one or two objects. Synthesis finally 
oversees the complete scene and produces the activity plan, the final abstract description of 
the activity. The components alone as well as together implement the need of a CV system 
for belief values, attention control and learning. 
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Figure 4: Abstract view of the ActIPret Demonstrator system structure 

4.2.1 Example set-up for expert mode 
An example system set-up of the ActIPret demonstrator during the expert mode could look 
like Figure 5. All real components are assigned to an abstract process.  

�� Main Components (MC) can be further subdivided into: 

Servers that only provide services; ��

��

��

��

User(s) that only require(s) services; 

Components that provide and require services; and 

Components that provide and require services and request a view (marked 
with a chequered square in Figure 4). 

�� Controller Components (CC) that try to service as many resource requests as 
possible; and 

�� Service Lists where all available services are registered. 
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As already mentioned in Section 3.4.6, service selection of components with varying 
resource requests can result in significant communication overheads. This is the case 
particularly with the ‘realisable view’ and therefore the corresponding robot pose is extremely 
variable and its behaviour is particularly environment dependent. If a component requests a 
view directed to track the top of an object (e.g. the CD) every change of position of this object 
can cause huge changes in the position of the robot. To reduce the communication overhead 
when using realisable view, the service list is separated into two different parts: 
 

�� the view independent service list where all components are registered that don’t 
require the resource ‘realisable view’; and 

�� the service list with view controller where all components are registered that 
require the resource ‘realisable view’.  

 
All view dependent components are placed in one specific layer as below. This simplifies the 
service selection and robot assignment process for this type of service request. 
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Figure 5: Example set-up 

The example set-up for the ActIPret demonstrator in Figure 5 realises all the principles and 
implementation rules introduced in the previous sections. Since the service principle is 
related to the dynamic set-up of the system, it is invisible. Nevertheless, the two different 
service lists can be seen on the right side.  
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4.3 Description of components 
This Section contains a short overview of each functional component of the AD. A fuller 
account of each of these components can be found in Appendix A with IDL in Appendix B. 

4.3.1 Service list (ACIN)     
The Service List is a database where components register their abilities and the properties of 
these abilities. These abilities are called services and form an abstract interface description 
of the components. All components and their services depend on the resources available. 
Resources are restricted. There is always a limited amount of CPU power, only a limited 
number of cameras and the free working space of the robots used to get good viewpoints is 
limited. Therefore access to resources must be managed to solve conflicting resource needs. 
The following three values are used to parameterise an abstract service description: 

�� Quality of Service (QoS): describes the performance (confidence, accuracy, speed, 
etc.) a service can actually deliver.  

�� Costs: are the abstract descriptions of the effort (resource requirement) of the 
establishment of a service.  

�� Priority: is set by the resource-requesting component to give a hint on how to solve 
conflicts of resource requests. 

4.3.2 User HMI (COGS) 
This module has overall control of the ActIPret system, and switches it between the major 
phases of operation: 
 

�� Learning phase: individual models are trained on databases of generic information. 
�� Expert phase: the entire system is run in a 'record-only' mode analysing the activities 

of an expert while demonstrating some specific part/whole of scenario and providing 
explicit start and end signals. Activity plans from each demonstration of the scenario 
are combined into a composite representation of the scenario.  

�� Tutor phase: the system either 'explains' how a scenario is carried out to a learner 
via some VR representation or 'watches' the learner attempt to carry out the scenario, 
either giving a binary 'correct/false' interpretation, or attempting to give guidance to 
the user when errors or confusion occur. 

4.3.3 Activity planner (COGS) 
In expert mode, the Activity Planner is concerned with the synthesis of an activity plan in a 
static database for the scenario as demonstrated by the expert. The scenario is 
demonstrated to ActIPret as exemplars. These exemplars may have end-to-end significance 
or the expert may choose to structure them in a hierarchical fashion. Where the expert 
structures the exemplars in a hierarchical fashion, the result is a hierarchical activity plan with 
embedded learned sequence models. Exemplars of the plan are represented in the 
conceptual language. This conceptual language will be defined formally elsewhere. 
The conceptual language in general consists of: 

�� Sequences of plan concept functions (atomic plan primitives) organised as a mixture 
of exemplars with end-to-end significance or organised into a hierarchical structure;  
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�� Specific behaviour models for activities, actions or events observed in the 
exemplars and derived from abstract models defined in the activity reasoning engine;  

�� Limited domain specific data outside the scope of existing models, necessary for 
the correct interpretation of the scenario. Such domain knowledge may include state 
variables to represent specific aspects of the functions on a CD player. 

 
In tutor mode, VR reconstruction of the scenario using the activity plan will provide initial 
instruction for the trainee. The activity planner is then used to generate a new temporary 
workspace activity plan for stepwise comparison with the static activity plan produced in 
expert mode. Comparison of the static and temporary plans will be used to determine 
whether the trainee has made any errors. VR reconstruction will then be used to explain any 
discrepancies to the trainee. 

4.3.4 Activity reasoning engine (COGS) 
The Activity Reasoning Engine can be represented at a high level as shown in Figure 6. 
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Figure 6: High level view of activity reasoning engine. 

The activity reasoning engine contains four separate elements: 
 

�� Control policy: determines at the most abstract level the task control strategy for the 
whole ActIPret system. When ActIPret is first started, this policy will be generic e.g. 
"find possible hand objects". This policy will evolve as task relevant vision data is 

 26



produced. For example, if a hypothesis has emerged that a candidate hand object is 
moving with a consistent trajectory, then the control policy should then locate 
candidate objects along that trajectory that the hand might pick up. 

�� Visual index: is a database of task relevant objects. The definition of task relevance 
will depend on the context set by the control policy.  

�� Hypothesis functions H: provide posterior probability estimates for a set of plan 
hypotheses. For example, using the previous example, the probability hi is given by 
hi = grasped-by(<object1>, <object2>). There are two distinct types of plan hypothesis 
function: those that map object tuples to deictic relationships that may lead to 
instantiated plan concept functions and those that map individual objects that are 
required for informing the control policy. 

�� Hypothesis manager: see Appendices for more details. 

�� Concept functions C: represent instantiated instances of activities, actions or 
events. 

4.3.5 Gesture recogniser (COGS) 
The Gesture Recogniser (GR) module is contained in the view-independent area of the 
ActIPret system and will use a Time-Delay Radial Basis Function (TDRBF) network to 
categorise characteristic purposive 3-D hand trajectories (gestures) over time. During the 
learning phase, the network learns the appearance of the general categories of these hand 
trajectories from a database of example data. 
The tasks concern manipulation of objects by hands in 3-D space. Therefore the major 
purposive hand gestures (or sub-activities) that need to be recognised by this module are: 

�� A hand moving away from the torso 

�� A hand moving towards the torso 
On initialisation by a service request from the activity reasoning engine, these can be 
recognised by the GR via a TDRBF network using either 3-D hand trajectory information 
(relative to the torso centroid) or 6-D hand/pose trajectory information. Information is passed 
back so that complex activities (such as the hand grasping an object) can be recognised via 
additional attentive queries, such as `Is the hand empty or holding something?' 
Where more than one hand is present in the scene, several parallel service requests can be 
made, one for each hand. 

4.3.6 Object relationship generator (ACIN) 
The component Object Relationship Generator controls the generation and maintenance of 
spatio-temporal relationships between two objects. It determines relationships between the 
objects (hand, CD, player, button) in 3-D at one instance or over several cycles. The 
relationships can be quantitative (frame relative to frame) or qualitative (proximity, above, 
left, moves along, etc.). 
Specific functions 

�� to confirm/create specific deictic relationship queries. This uses specific references to 
objects for answering a specific (single shot) query, for example proximity<Obj1, 
Obj2>, where Obj1/2 is a reference to a given object; 

�� to create deictic relationships. This uses other components to obtain potential object 
candidates to establish the relationship. The relationship determines levels of task-
related interest of combinations, e.g., proximity. The evaluation of the relationship 
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may be recreated each cycle or updated. Priorities for this would be determined by 
the Control Policy, e.g., 'find objects on hand trajectory’ (with priority p); and 

�� to update current deictic relationships. This newly evaluates a previously created 
relationship each cycle by using the updates from other components such as 
tracking.  

Specific relationships 
The specific relationships derived by the Object Relationship Generator are simple, task-
related operators and are in two forms (see deliverable 3.1 for more details): Basic 
relationships are generally behaviours of a single object or simple relations between two 
objects. Aggregate relationships are relations between two (or more) objects and in the 
spatio-temporal domain. Of particular interest for the ActIPret system will be: 

�� Purposive behaviour trajectory: a single object trajectory is of interest for the 
synthesis process, if the object (hand) makes a purposive behaviour trajectory, that is 
a trajectory that is task relevant. An example is a hand moving towards an object. The 
goal is to detect the purposive trajectory as early as possible to be able to focus 
processing to the area indicated by the direction of the trajectory. An example is 
grasping, where processing should be focused on the objects at the estimated grasp 
location. Methods to detect a purposive behaviour trajectory can be based on Kalman 
filters (as proposed by ACIN) or a time-delay Radial Basis Function (RBF) network 
(as proposed by COGS).  

�� Distance between two objects (mutual proximity): the exact distance between two 
objects depends on the representation of the objects used. The simplest 
representation uses the reference coordinate frames. In this case the distance is the 
Euclidian distance between the origins of the two object coordinate frames. If the 
objects are represented with a hull, the distance can be defined as the closest point 
between the two hulls.  

�� Find objects near to each other: this service provides a pre-attentive predictive cue, 
based on the assumption that the closer two objects are to each other, the more likely 
they are to have some task-relatedness. 

�� Object near trajectory of object: this service provides a pre-attentive predictive cue, 
based on the assumption that the closer an object is to a hand's trajectory, the more 
likely it is to be manipulated by that hand. 

4.3.7 Service list with view controller (Profactor) 
The Service List with View Controller is very similar to the normal Service List, which is 
specified by ACIN. This process takes over additional functionality to assign a specific robot 
to a requested service. 
This component contains the View Controllers, which are responsible to operate the view 
requests of the services. It contains functionality to merge the requested view points and 
initiates the movement of the robots. For details see Deliverable D6.1. 

4.3.8 Hand detector and tracker (FORTH)     
The functionality of this service is to detect and track human hands present in the scene 
viewed by the ActIPret stereoscopic vision system. This functionality will be based on: 

�� Colour information: skin colour models will be used as a cue indicating the 
presence of hands in the viewed scene. Several models are currently under review. 
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�� Motion information: since hands participate in activities and actions, a skin-coloured 
region in the image becomes more salient if it moves. Motion is measured with 
respect to a world-centred coordinate system, which actually coincides with the 
coordinate system in which camera positions are measured and reported.  

�� Depth information: depth information is necessary for reporting 3-D position of 
hands in the image. The "locality of reference principle" (in simpler words, the 
continuity of the 3-D locations of a hand as a function of time) will be used to resolve 
ambiguities.  

�� Tracking mechanisms: the previous modules provide visual cues to tracking 
mechanisms that will track the various hand hypotheses in the scene. Kalman filtering 
is a classical tracking mechanism. Additionally, current investigations include particle 
filters and more specifically, tracking based on the condensation algorithm.  

The above-mentioned techniques are accompanied with techniques for computing camera 
positions that are beneficial for observing the scene and tracking the hands present in the 
scene. For the moment, two criteria are considered: 

�� The most salient hand hypothesis should remain in the field of view of both cameras. 

�� The viewpoint should be such that the most salient hand moves in an almost front-
parallel plane (appears to be moving laterally).  

4.3.9 Object detector and tracker (ACIN) 
The functionality of this component is model-based detection and tracking of objects. 
Tracking means to regularly determine the object location (and orientation) in 3-D in soft real-
time (latency not longer than several frame cycles). 3-D pose is extracted from one or more 
2D camera views. The model is either a wire-frame representation using vertices, lines, 
ellipses and regions (for man-made objects like a CD player) or just colour, colour 
histograms or texture (e.g. for regions). Detection is one possible initialisation of tracking and 
can be based on colour, colour histograms or texture derived from the model. Using data of 
extern recognition is another way for initialisation. 
The principal output of this service is 3-D pose data (position and orientation) relative to a 
world coordinate frame at each time step (i.e. an update every 33ms), together with an 
uncertainty value for pose accuracy (standard deviation) and a confidence value for object 
tracking. 
Additional output could be the re-projection of the object into images, image location of 
(found/projected) features, the location and confidence values of individual features in 
images in 2D (e.g. to inform other trackers about possible occlusions - see section 3.), and 
possibly the transformation to other coordinate systems (e.g. camera, head). 

4.3.10 Object recogniser (CMP) 
This component uses an example based object representation to learn and recognise objects 
in a scenario. See also Deliverable D4.1. 

4.3.11 Hand recogniser (FORTH) 
To be defined if more than hand detection is required. 

4.3.12 Motion detector (FORTH) 
The Motion Detector module finds moving objects in the scene, while the observer is also 
moving. Motion is measured with respect to a world-centred coordinate system, which 
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actually coincides with the coordinate system in which camera positions are measured and 
reported. Since the observer also moves, the solution of the problem relies on knowledge of 
the depth of the scene. Provided that depth is known (stereoscopic processing) and camera 
egomotion is also known, a motion field can be predicted, assuming that the 3-D world 
remains rigid. The actual flow is then compared to the predicted flow and significant 
deviations between these two flows are attributed to independently moving objects.  

4.3.13 Ellipse detector (CMP + ACIN) 
Detects ellipses in an intensity (colour) image. Ellipses can be partially occluded. Ellipses are 
found by grouping of convex edge strings. 

4.3.14 Image server (camera) (Profactor) 
The Image Server is responsible for providing the images of cameras, which are mounted on 
a robot. Since it is not a good idea to send whole images with TCP/IP, we will use shared 
memory to transmit the data. 

4.3.15 Pose server (Profactor) 
The Pose Server is responsible for providing the current position and orientation of the 
Robot-TCP (Tool Centre Point). The services also provide the current information of the 
camera angles, which are mounted on the robot. 

4.3.16 CPU controller (Profactor) 
The CPU Controller is a service, which determines the available CPU-Time of a specific 
computer. The information is used to find a computer with the lowest CPU usage for a 
requested service. 

4.3.17 Scene modelling for visualisation (CMP) 
The three-dimensional scene will be described using the VRML standard and presented 
using third-party VRML browser/viewer. The objects can be parameterised (scale, colour, 
surface texture, etc.). Humanoid model should be H-Anim 1.1 compliant and it can be 
parameterised, too. Data describing motion can be converted to the VRML interpolator 
format and used in VRML scene. 
 

4.4 Framework tool selection 
A very first version of the ActIPret framework must be presented after year 1. For 
successful integration and testing this early version of the framework, establishing 
the component communication as soon as possible is imperative. A first evaluation 
did show that the ActIPret Framework must base on an existing component-based 
software-tool, which is on a higher abstraction level than middleware such as RPC 
[5], ACE [7, 8], or CORBA [9].  
Middleware: Considering safety of investment in the future and the existing interfaces, 
CORBA of the OMG [10] is superior to ACE and RPC.   
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4.4.1 The tools for the framework 

Evaluated Framework-tools / Framework concepts are: RCS, NASREM [1], 
SAPHIRA [2], BERRA [3], DAMN [4], AYLLU [4], MOBILITY [11], OROCOS–Patterns 
[13], SMARTSOFT [12], OSCAR [14]. The evaluation was done according to 
availability, modern design, clear component design and debugging support. 
A preselection phase did show that the most suitable versions are MOBILITY, 
SMARTSOFT and OSCAR. Up to now there is no implementation of the OROCOS 
concept available. Because it is an interesting concept of an impressive and powerful 
consortium the design pattern of OROCOS was also part of the evaluation. 
As best fitting middleware, we identified CORBA. These 4 where evaluated in more 
detail according to the following topics: 

Availability: 
1. Sources Available? 
2. Available Licences? 
3. Documentation quality? 
Easy to use 
4. Required knowledge in Middleware communication 
5. Support of the used Hardware 
6. Debugging opportunities 
Safety of investment 
7. Will the system be maintained and improved in the future? How many engineers 

are working on it? 
8. How long does the system exist 
9. Will adaptation made in ActIPret migrate into the system or will every release 

cause new incompatibilities? 
10. How widely is the system used now and in the future (estimated) 
11. Is the system based on CORBA? 
12. Prior experience with the system? 
13. Open Source? 
Functionality supported 
14. Vision modules 
15. Robotic Modules 
16. Variety of supported functionality  
17. Suitability of functionality 
 
Ranking: 1 good – 5 poor, points that are of specific relevance are marked  
 Reason for rejection 
 Strong contra-point 
 Positive Point 
  
# SMARTSOFT MOBILITY OROCOS OSCAR 

1 3 (the system is partially 
available and the developer 
has promised send a free 
version. But not received yet) 

5 (The system is not 
available for tests) 

5 (The system is now in the 
definition phase and not available 
in the near future) 

1 (The system is already 
available) 
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2 3 (system in under the GPL 
licence) 

5 (it is a commercial 
product and the licence is 
not available now) 

1 (system will be under the GPL 
licence) 

1 (free licence available, will 
be made open source) 

3 1 (well documented) 2 (documentation 
focussing on RWI robots) 

- (documentation of the 
communication pattern available) 

5 (limited documentation in 
German only) 

4 2 (knowledge of the 
underlying middleware ACE 
is not necessary) 

3 (only some knowledge 
about the naming service 
of CORBA is necessary) 

(The underlying middleware is 
not known yet) 

2 (knowledge of the 
underlying middleware 
CORBA is not known. Only 
IDL knowledge is necessary) 

5 3 (no support for the 
hardware, but no barrier to 
implement it) 

3 (no support for the 
hardware, but no barrier to 
implement it) 

(Till now no support for hardware) 2 (support for the AMTEC 
Hardware already available) 

6 2 (the system provides 
debugging functionality) 

2 (the system provides 
debugging functionality) 

(no debugging functionality 
defined till now) 

2 (the system provides 
debugging functionality) 

7 3 (the team of the 
developers is very small) 

2 (the team of the 
developers is small. The 
web presence is 
decreasing since bought 
by iRobot) 

1 (the consortium is very 
impressive) 

3 (very small team) 

8 1 (the system exists for 5-6 
years) 

1(the system exists for 4-5 
years) 

5 (the system is not existing yet) 1(the system exists for 4-5 
years) 

9 5 (the migration of 
adaptations is very unlikely) 

5 (the migration of 
adaptations is very 
unlikely) 

4 (extension of patterns unlikely 
but possible) 

2 (the migration after testing 
is promised by the developer)

10 3 (there are estimated 7 
institutes they are using the 
system) 

2 (the system widely 
distributed with RWI 
robots) 

1 (Many European laboratories 
participate in the discussions and 
design) 

4 (there are 4 institutes so 
far they are using the system)

11 4 (the system is ACE-Based) 2 (the system is based on 
TAO “The Ace Orb”) 

2 (there are independent 
patterns so far) 

1 (the system is based on 
ORBacus 4.x, which is a free 
available CORBA 
implementation for no 
commercial use) 

12 5 (there is no evaluation 
version available up to now) 

2 (FORTH has experience 
with the system. But there 
is no evaluation version 
available) 

(the system is not existing yet) 1 (PROFACTOR and ACIN 
have experience with the 
system) 

13 3 (in principle are parts open 
source. Evaluation version 
not yet available) 

5 (no version available) 1 (the plan is to make the 
system open source) 

2 (the sources are available 
at PROFACTOR. There are 
plans to make it open source)

14 3 (there is a wide support of 
vision modules) 

3 (support for all kinds of 
sensors) 

2 (support for vision modules is 
estimated) 

2 (optimised on multi-cue 
systems with ring-buffer 
concepts) 

15 3 (the good patterns are 
usable for robotic modules. 
Currently only mobile robots 
are tested) 

3 (robotic functionality is 
mostly supported for RWI 
robots) 

1 (very well elaborated patterns 
for robotic modules) 

4 (the supported functionality 
is mostly for mobile robots. 
The usability for manipulators 
is tested) 

16 1 (a wide variety of 
functionality is provided) 

2 (a wide variety of 
functionality is provided) 

1 (it is planed to provide a wide 
variety of functionality) 

4 (mostly functionality for 
communication is provided) 

17 2 (The communication 
functionality is very useful) 

3 (communication 
functionality is not very well 
supported) 

1 (it is planed the provide very 
useful functionality for robotic 
systems) 

2 (The easy communication 
functionality is very useful) 

Table 2 
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Conclusion: OROCOS and MOBILITY are not available (within the early period of WP1, or 
at all) and therefore cannot be considered. However, due to the expected impact OROCOS 
should be observed.  SMARTSOFT is based on ACE, and availability is very limited.  
OSCAR is with limitations usable, easy to use, based on CORBA, and will incorporate 
Cognitive-Vision-Framework’s specific parts developed in ActIPret after testing. Therefore, 
OSCAR is chosen. Free licenses of OSCAR are available for the ActIPret and OSCAR will 
be made open source next. For safety of future investments, the following improvements are 
suggested:  
1. Increased efforts for documentation 
2. Interfacing to OROCOS Framework as soon as available  
   

4.4.2 Hardware 
The Demonstrator will be build up based on 4 AMTEC Manipulators or Pan-Tilt Units with 3-6 
DOF. The manipulators will be controlled via a CORBA interface developed at PROFACTOR 
which communicates with a Real-Time Robot-Controller.  
The manipulators carry stereo-pairs or triples of ieee1394 cameras.  SONY DWF500L zoom-
lens cameras will be used for the manipulators, Basler A320f cameras with fixed-focus 
lenses are considered for the pan-tilt units. 
Scenarios, example videos (Profactor): 
Two example videos for the scenario insertion of a CD in a player have been logged so far. 
The videos are taken with verging, but non-moving Pan-Tilt-Unit for varying view on the CD 
player and operator with changing starting scenario. Next example videos will be made with 
moving camera-system as soon as a first framework-version is available that allows 
synchronised data logging of video-data and camera poses.  
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