

DELIVERABLE D1.2 (v1.0)

First prototype Implementation of the CV
Framework

Draft/Final Version 1.0

13 Nov 2002

Authors: Kingsley Sage, Jonathan Howell, Wolfgang Ponweiser,
Hilary Buxton, Markus Vincze, Christof Eberst, Stepan Obdrzalek

Project acronym: ACTIPRET

Project full title: Interpreting and Understanding Activities of

 Expert Operators for Teaching and Education

Action Line IV.2.1: Real Time Distributed Systems
 (Cognitive Vision)

Contract Number: IST-2001-32184

 Q:\PROJEKTE\ACTIPRET\Deliverables\Month12\D1-2_Final_V1-1.doc

Contents

1 Introduction .. 3

2 Integration Set-up .. 3

3 Demonstration system experiments... 4

3.1 Service call sequencing and observed behaviour ... 4

3.2 Off-line training .. 6

3.3 Summary of performance of the demonstration system 6

3.4 Example output from demonstration system ... 7

4 Further work... 9

5 References... 10

 2

1 Introduction
This deliverable presents the results from the first integration meeting that took place
on 28-30 October 2002 at Profactor GmbH in Steyr, Austria. This demonstration was
intended to evaluate and demonstrate real time framework operation and
communication between the components of the Cognitive Vision (CV) Framework
(see Deliverable 1.1)
Section 2 describes the set-up of the first demonstration system. Section 3 details the
expected system behaviour, the test sequence used for this integration system and
summarises the performance of the demonstration system. Section 4 lists a number
of key elements of the further work.

2 Integration Set-up
For the integration meeting nine different components were provided from the project
partners. To enable a first integration all components were available in a dummy
version, where just the communication capability was implemented. The next
integration step was then to use the real component versions, where the actual
functionalities were realised.
The demo functionality ‘a hand moving towards a CD’ was selected to use a set-up
(see Figure 1) in which most of the provided components are included and which
corresponds to the example set-up presented in Deliverable 1.1 (see Figure 6 in that
document) for a single fixed stereo camera pair.
This functionality maps some of the initial steps of the first full ActIPret scenario ‘play
CD in player’ or ‘playCD’ (as referred to in the Deliverable 5.1 Conceptual Language
definition file).

AttentionPre-AttentionLegend

Camera 1

Pre-Reasoning

Synthesis

Hand Detector
& Tracker

Object
Detector &

Tracker

Pose Server

Object
Relation

Generator

Activity
Reasoning

Engine

Object
Recogniser

Gesture
Recogniser

da
ta

 a
bs

tra
ct

io
n

Service List

Detect Motion:
QoS, Costs, Desc. (PC1)
Track Object in 2D:
QoS, Costs, Desc. (PC1)
Track Object in 2D:
QoS, Costs, Desc. (PCn)
.
.

Task based control
(Service request)

Image data driven
(Service response)

communication link

Component
Namereal component

Process Nameabstract process

Image Server

Figure 1: Demonstration set-up

 3

Table 1 lists the involved components:

Component Name Provided services
Service List (SL) -

Activity Reasoning Engine (ARE) -

Gesture Recogniser (GR) RecogniseGesture

HandTracker (HT) TrackObject

ImageServer (IS) ImageServer

CameraPoseServer (PS) PoseServer

Object Relationship Generator (ORG) DetectProximity

Object Recogniser (OR) Recognise3D

Object Detector & Tracker (ODT) TrackObject, DetectObject

Table 1: Components and their provided services of the demonstration set-up.

For the first demonstration system, there were no Activity Planner and User HMI
components as described in Deliverable 1.1. The ARE did not, therefore, need to
provide any services to higher level components. As a result, ARE output was
internal to that component and displayed to a Xterm console.

3 Demonstration system experiments

3.1 Service call sequencing and observed behaviour
The service request and according response sequencing for the nine components
used for this integration meeting for the CD demo functionality are summarised in
Table 2 below:

sender - receiver/
processing
component

Message name Description

ARE – GR AutoUpdateGestures-ForHandObject Motivated by the
assumption of an initialiser
‘moving hand’

GR – HT TrackObject Request hand trajectories
continuously

HT – IS AutoUpdateShmImage Request stereo images
continuously

HT – PS GetCameraPose Request camera pose

 4

sender - receiver/
processing
component

Message name Description

*IS – HT AutoUpdateShmImageResponse Deliver stereo image data

PS – HT GetCameraPoseResponse Deliver camera pose

HT Using colour information in
the stereo images to
calculate 3D hand pose

*HT – GR TrackObjectResponse Deliver hand pose
hypotheses

GR Using a trained TDRBF

*GR – ARE AutoUpdateGestures-
ForHandObjectResponse

Deliver gesture hypotheses

ARE Increase hypotheses belief

ARE – ORG AutoUpdateObjects-NearTrajectory Request objects near the
hand trajectory

ORG – HT GetObjectTrajectory Request hand trajectory

HT – ORG GetObjectTrajectoryResponse Deliver hand trajectory

ORG Calculate ‘space of interest’

ORG - OR Recognise Request for pre-learned
objects in the ‘space of
interest’

OR – IS GetShmImage Request image

IS – OR GetShmImageResponse Deliver image

OR – PS GetCameraPose Request camera pose

PS – OR GetCameraPoseResponse Deliver camera pose

OR Using learned object
database to detect objects

OR - ORG RecogniseResponse Deliver detected CD’s and
their poses

ORG Using one of the CD’s to
initialise the object tracker1

ORG – ODT TrackObjectInitialised Request CD poses
continuously

ODT - IS AutoUpdateShmImage Request image
continuously

1 The ARE should bias the selection which objects should be tracked.
* These responses are calculated and sent continuously.

 5

sender - receiver/
processing
component

Message name Description

ODT - PS GetCameraPose Request camera pose

IS - ODT AutoUpdateShmImageResponse Deliver image

PS - ODT GetCameraPoseResponse Deliver camera pose

ODT Using object model
knowledge to reliably track
object

Table 2: Demonstration sequence

3.2 Off-line training
COGS made use of an existing hand gesture database to pre-train the GR Time
Delay Radial Basis Function (TDRBF) network to recognise functional gesture
phases appropriate to the task of ‘picking up’. The gesture data used for the
experiments in this paper was the Terminal Hand Orientation and Effort Reach Study
Database created by Human Motion Simulation (HUMOSIM) at the Center for
Ergonomics, University of Michigan, USA. Further information about this database
can be found at [1] and [2]. The HUMOSIM database uses a torso centred co-
ordinate system and a measurement system in centimeters. For the demonstration,
we trained the TDRBF on 18 complete HUMOSIM hand trajectory sequences
encompassing functional gesture phases for both hand moving towards an object
(away from a torso) and away from an object (towards the torso).
The OR component used a database of objects to be recognised) that was built prior
to system startup. Each database object is represented as a collection of images of
these objects. For better results, the images should be visually as similar as possible
to these encountered during runtime (i.e. similar image quality, resolution,
illumination condition, etc.). The learning of the database is performed in real time
during the component startup.

3.3 Summary of performance of the demonstration system
The demonstration system was built using a single static stereo camera setup. The
system consisted of nine independent processing components built using the
common ActIPret framework built around OSCAR and CORBA middleware. Message
passing was achieved in a timely manner and the system was able to produce a high
level symbolic interpretation from low level vision derived signals. More specifically,
the system was able to:

�� detect and track a hand (HT – see Figure 3),

�� recognise functional gestures phases for that hand (GR – see Figure 5),

�� request object relationships of the tracked hand (ORG),

�� recognise CDs in the environment of the hand (OR – see Figure 4),

 6

�� initialise the object tracker with the CD pose information (ODT),and

�� generate hypotheses about which objects the hand was interacting with
(ARE).

The system proved capable of performing these operation on both the pre-stored
image sequence and live images.

3.4 Example output from demonstration system
At this first demonstration stage, the system output is the interpretation in the ARE.
At this stage the internal function of the ARE is very simple and consists of a linear
Finite State Machine (FSM) that uses a single state variable to represent the state of
the task control. The ARE tries to build and maintain a simple list structure of action,
activity and event based hypotheses (such as the ‘pickup(hand1,cd1,location)’). The
task based control rules that were embedded in the ARE FSM relevant to the demo
functionality ‘hand moving toward the CD’ can be summarised as shown in Table 3
overleaf:

ARE FSM
State

Description Task control strategy

0 INITIAL Change to state 1.
1 LOOKING_FOR_1st_PURPOSEFUL_

HAND_MOVEMENT
Start the GR RecogniseGesture
service to look for purposeful gestures
(assume there is only 1 hand that the
GR and HT will find).
When the returned data indicates a
moving hand, change to state 2.

2 LOOKING_FOR_1st_OBJECTS_ON_

HAND_TRAJECTORY
Start the ORG DetectProximity service
to look for objects on the trajectory of
the moving hand.
Use the returned data to build and
maintain a set of hypotheses about
which objects the hand is interacting
with.
When the returned data indicates the
hand gesture GET has completed,
attempt to verify which objects the
hand has interacted with, change to
state 3.

3 LOOKING_FOR_2nd_PURPOSEFUL_

HAND_MOVEMENT
And so on …

Table 3: Demonstration sequence

 7

We can define success, therefore, for the demonstration system as a whole for the
demo functionality ‘hand moving toward the CD’ if the ARE is able to make progress
through the FSM from state 0 to state 3. On arrival at state 3, the ARE should contain
hypotheses to the effect that the hand may be picking up any of the objects defined
along the hand trajectory path as determined by the ORG.

Figures 3 to 5 show the output of intermediate steps, in particular of the components
HandTracker, and ObjectRecogniser.

LEFT IMAGE RIGHT IMAGE

Figure 3: Example stereo pair of images from the HandTracker (HT). Detected hand
shown in blue. (black on a grey scale printout).

Figure 4: Example of a reconstructed hand trajectory based on smoothed output from
the HandTracker (HT). Here the data has been rescaled into a torso centered co-

ordinate system using the initial hand position as the origin. This plot assumes a uniform
temporal interval as no timestamp data was available.

 8

Figure 5: Example of object localisation provided by the ObjectRecogniser (OR). In this
case, the OR has detected three candidate CD objects (marked by the blue, green and

red squares). The two at the right are false responses, as the particular scene
background is visually similar to a CD. The OR results would be improved by a) better
image quality, b) removal of the cluttered background, and c) restricting the space of

interest to just the table

4 Further work
It should be noted that any qualitative evaluation of the components functionality was
outside the scope of the demo; only the interrelation between the components was
tested.
The current demonstration works with nine components. There are still some
evaluation tests and extensions that could be usefully performed on this configuration
before work begins on project task 1.3 (full implementation of the CV framework)
including the:

�� evaluation of the timing behaviour of the entire system, including issues such
as the overhead attributable to the dynamic and distributed processing
structure, and

�� introduction of a unique logging instance to enable system tracing.

In the light of the integration meeting, the following issues also need to be addressed:

 9

�� enabling of blocking messages to enable a greater range of component
complexities and simplifying programming,

�� redefinition of the IDL types used in the interfaces to unify service definitions
revised in the light of the first integration,

�� the erratic timing nature of the ‘soft real time’ messaging and the varying
service response times of individual components means that a new message
may not be available at every system cycle. This means that timestamps are
required with all data (this issue is being addressed in the revised IDL
definitions),

�� the GR needs to be trained on actual hand trajectory data from the HT
(already agreed in principle between FORTH and COGS), and

�� FORTH will experiment with variable smoothing of the hand trajectory data
with the HT as a function of top down functional gesture phase expectation
determined by the GR.

Future work will also focus on introducing active vision to the ActIPret Demonstrator:

�� The experiments performed thus far have been with fixed cameras only For
the next version of the Framework (1.3), PROFACTOR’s ViewController (VC)
and ViewContractManager (VCM) will be integrated and tested with multiple
active cameras mounted on robots.

�� A providing component that includes active-vision properties, i.e. one that
commands a sensor, is started by the requesting component on the
camera/robot instance that has been selected by the VCM according to
estimated cost and quality properties (see Deliverable 6.1). The providing
component will send view-requests to its associated VC in order to improve its
own performance. The VC will merge all view-requests and command the
robots/cameras. The VCM and VC will cooperatively evaluate the cost for
performing a service for a given robot/camera entity.

5 References
[1] Buxton, H., Howell, A.J. and Sage, K., “The Role of Task Control and Context

in Learning to Recognise Gesture'” Cognitive Vision Workshop, Zürich,
Switzerland, September 2002.

[2] Howell, A.J., Sage, K., and Buxton, H., “Developing Task-Specific RBF Hand
Gesture Recognition”, submitted to 3rd International Conference on Computer
Vision Systems - ICVS 2003, Graz, Austria, April 2003.

 10

	First prototype Implementation of the CV Framework
	Draft/Final Version 1.0
	13 Nov 2002
	Introduction
	Integration Set-up
	Demonstration system experiments
	Service call sequencing and observed behaviour
	Off-line training
	Summary of performance of the demonstration system
	Example output from demonstration system

	Further work
	References

