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1. Introduction 
Deliverable D2.1 is software (demonstration) deliverable. The demonstration will 
show how cue integration is used to obtain robust hand tracking. It will also 
demonstrate the quality of the 3D hand trajectories estimated through tracking.  

 
D2.1 is closely linked with D3.2, which presents the cue integration 

methods and relations of cues and features. The next table summarizes the 
content originally intended for deliverables D2.1 and D3.2. It also provides the 
new distribution of content, which results from the wish to present methods 
together with results for each of the two components of the ActIPret framework in 
one deliverable: hand tracking in D2.1 and object tracking in D3.2. 
 

Component Hand tracking Object Tracking 
Deliverables  (new D2.1 = this column) (new D3.2 = this column) 

(original D2.1 = this row) Cue selection method, 
trajectory estimation 

Cue selection method, 
trajectory estimation 

(original D3.2 = this row) Relations of image 
descriptors = cue integration

Relations of image 
descriptors = cue 

integration 

Table 1: Old and new content of Deliverables D2.1 and D3.2. The new content results 
from presenting complete methods and results for the two components of the ActIPret 

framework in one Deliverable: hand tracking in D2.1 and object tracking in D3.2. 
 

This document accompanies the software (demonstration) deliverable and 
its aim is to provide a sort description of the Hand-Tracker component (HT) 
developed in the context of the ActIPret project.  

 
The rest of the document is organized as follows. Section 2 describes the 

overall functionality of the HT component. Section 3 describes the 
interconnection of HT with the rest of the components within the ActIPret 
framework. In section 4, issues related to the computational performance of the 
HT component are discussed. Section 5 provides sample results of the operation 
of the HT component in prerecorded image sequences. Section 6 provides a list 
of extensions and ideas for improvements that are still under investigation. The 
main conclusions of this work are summarized in section 7. 
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2. Hand Tracker (HT) component description 
The hand tracker (HT) component that has been developed in the context of the 
ActIPret project is able to detect multiple hand hypotheses and report the 3D 
position of each such hypothesis in a scene observed by a moving stereoscopic 
system, as the one shown in Fig. 1.  
 

 
Figure 1: The stereoscopic head (courtesy Profactor GmbH) that is used to acquire 
image stereo-pairs that feed the HT component.  

  
The stereoscopic vision system provides, except from image stereo-pairs, the 
position and the orientation of the two cameras with respect to a world-centered 
coordinate system. A timestamp-based mechanism guarantees the required 
synchronization of image acquisition and camera position estimation processes.    

 
The developed HT component exploits multiple cues towards hand 

tracking. Example cues include color information, motion and structure 
information as well as information regarding the known camera positions and 
epipolar geometry of the stereo system. Figure 2 provides a high-level block-
diagram of the developed HT component.  

 
The HT component operates as follows. At each time t, the stereoscopic 

head acquires a synchronized image stereo-pair, IL(t) and IR(t). Each of these 
images is independently fed into a skin color detection (SCD) module. SCD 
involves (a) measurement of the probability of a pixel being skin colored (b) 
hysteresis thresholding on the derived probabilities (c) connected components 
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labeling to come up with skin-colored blobs constituting hand hypotheses (HH) 
and (d) computation of statistic information for each HH (up to 2nd order moments 
for each HH). The derived HHs, together with the hand hypotheses derived in the 
previous time instance t-1, are then fed into the “association of hands in time” 
(AHHT) module. The aim of this module is (a) to assign a new, unique hand ID to 
each new hand hypothesis (i.e. a HH that appears in the field of view (f.o.v.)  for 
the first time) and (b) to propagate the hand ID of already detected hand 
hypotheses in time, guaranteeing this way that the same physical hand 
hypothesis is assigned always the same hand ID. Then, the left and the right 
hand hypotheses, together with the associated hand IDs, are fed into a module 
that associates hand hypotheses between the two images of the stereo-pair 
(AHHS). In fact, the hand hypotheses of the right image of the stereo-pair are 
assigned the hand-IDs of their corresponding hand hypotheses in the left image 
of the stereo-pair. As soon as this type of association is completed, the centroids 
of the corresponding hand hypotheses are refined (Centroid Matching, CM 
module) based on a correlation-based technique to guarantee that these points 
correspond to the same 3D point in the scene. The refined matches are then fed 
into a 3D reconstruction (3DR) module which, taking into account the known 
geometry of the stereoscopic system as well as the intrinsic calibration 
parameters of each of the cameras, computes the 3D location of each hand 
hypothesis. Finally, the reported position of each hand hypothesis is a weighted 
sum of 3D measurements in a sliding time window. This functionality is provided 
by the temporal smoothing (TS) module. 

 
What follows, is a more detailed description of each of these modules.     

 

Figure 2: Block diagram of the FORTH Hand Tracker component. 
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2.1. Skin color detection (SCD) 
Skin color detection (SCD) is one of the fundamental building blocks of the 
developed HT component. The goal of the SCD module is to detect skin colored 
blobs in an image, each corresponding to a different hand hypothesis. SCD is 
based on a Bayesian approach. It involves (a) an adaptive, off-line training phase 
and an adaptive, on-line detection phase. 
 
2.1.1 Basic training and detection mechanisms 
A set of training images is selected on which a human operator marks skin-
colored regions. The color representation used in this process is the YUV 4:2:2 
color representation that is the direct output of the firewire cameras used in the 
stereoscopic system of Fig. 1. However, the Y-component of this representation 
is not employed for two reasons: (a) the Y-component codes the illumination of 
an image point and therefore, by omitting it the developed classifier gains 
illumination-independence characteristics, (b) by employing a 2D color 
representation (UV), as opposed to a 3D one (YUV), the dimensionality of the 
problem is reduced and therefore the computational performance of the overall 
system is improved.  

 
Assuming that image points I(x, y) have a color C(x, y) = (u, v), the training 

set is used to compute: 
• The probability P(S) of having skin color in an image. This is the ratio 

of the skin-colored image points in the training set over the total 
number of image points.   

• The probability P(C) of occurrence of each color C in the training set. 
This is computed as the ratio of occurrences of each color C over the 
total number of image points in the training set. 

• The probability P(C|S) of a color C being a skin color. This is defined 
as the ratio of occurrences of a color C within the skin-colored areas 
over the number of skin-colored image points in the training set.   

As soon as training has been performed, the probability P(S|C) of an 
image point with color C to be skin-colored can be computed by employing the 
Bayes rule [1]:  
 

( | ) ( )( | )
( )

P C S P SP S C
P C

=  (1) 

 
For each point I(x, y) of the input image having color C = C(x, y) = (u, v), eq. (1) is 
employed to estimate the probability P(S|C) based on the prior probabilities 
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computed from the training set. The probability map that results from this 
operation is then thresholded and all image points with probability P(S|C) > Tmax 
are considered as skin-colored points. These points constitute the seeds of 
potential hand hypotheses. More precisely, pixels with probability P(S|C) > Tmin, 
Tmin < Tmax, that are immediate neighbors of skin-colored image points are 
recursively added to the set of skin-colored points. This hysteresis-thresholding 
type of operation proves extremely robust in identifying skin-colored blobs. 
Indicative values for the thresholds Tmax and Tmin are 0.5 and 0.15, respectively. 
A connected components labeling algorithm is then responsible for assigning 
different labels to the pixels of different skin-colored blobs. Blobs that consist of 
less than Tsize image points are rejected from further consideration. Each of the 
remaining blobs corresponds to a different hand hypothesis, HH. The final step in 
skin color detection is the computation of the 2D position of each hand 
hypothesis in the image (defined as the center of mass of all skin-colored image 
points of the corresponding blob) and other statistics that correspond to shape 
properties of each blob. 
 
2.1.2 Adaptability 
The basic scheme for SCD described in the previous section has two major 
drawbacks: 
• Training: Training is an off-line procedure that does not affect the on-line 

performance of the hand tracker. Nevertheless, it is a very time-consuming 
spadework, in the sense that a human operator should mark all skin-colored 
pixels in the selected training set. Moreover, in order to come-up with a 
training set that is capable of supporting tracking of various skin-tones in 
images acquired from different cameras, a large training set is required. 
Therefore, a method that facilitates the process of acquiring training data is 
considered quite important. 

•  Detection: In the case of varying illumination conditions, the SCD module 
may produce poor results, even if the used color representation has 
illumination-independence characteristics. Therefore, a method is required 
that adapts the notion of skin-colored image points according to the recent 
history of detected skin-colored points.  

 
To cope with the first problem, an adaptive training procedure has been 

developed. Training is performed on an initial, small set of images for which the 
human operator provides ground truth by defining skin-colored areas. Then, 
detection, together with hysteresis thresholding is used to continuously update 
the prior probabilities P(S), P(C) and P(C|S) in new images. The updated prior 
probabilities are then used to re-classify the full data set into skin-colored and 
non-skin colored pixels. In cases where the classifier produces wrong results 
(false positives / false negatives) the role of the user is just to correct these 
errors; still, the classifier has already done by itself much of the spadework. The 
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final training of the classifier is then performed on the large training set that 
results after editing. The process of adaptation can either be disabled as soon as 
it is decided that the achieved training is sufficient for the purposes of the HT 
component or continue as more input images are fed into the system. In fact, the 
only reason for disabling the adaptation process is to release the system from the 
associated computational costs. 

 
It is important to note that hysteresis-thresholding is very crucial for 

achieving the previously described adaptation of probabilities. This is because, 
due to hysteresis thresholding, image points with relatively low probability of 
being skin-colored are considered as skin colored, which permits the adaptation 
of their probabilities. 

 
A basic advantage of the proposed scheme lies in its simplicity. Other 

methods for adaptation have been proposed in the literature [2]. However, these 
methods require much more complex modeling of the color characteristics of skin 
(i.e. modeling based on mixtures of Gaussians). A quantitative comparison of the 
two approaches is an ongoing task.    

 
To solve the second problem, the SCD module maintains two sets of prior 

probabilities P(S), P(C), P(C|S) (corresponding to the training set) and PW(S), 
PW(C), PW(C|S) corresponding to the evidence that the system gathers during the 
W most recent frames. Evidently, the second set better reflects the “recent” 
appearance of hand hypotheses and is better adapted to the current illumination 
conditions. SCD is then performed based on: 

 

( | ) ( | ) (1 ) ( | )A WP S C aP S C a P S C= + −  (2)

 
In eq. (2),  is a parameter that controls the influence of the training set in the 
detection process ( ). If 

a
0 1a< ≤ 1a = then SCD takes into account only the training 

set and no adaptation takes place; if is close to zero, then the SCD becomes 
very “reactive”, taking into account mostly the recent past as a model of the 
immediate future. A value of a

a

0.8= gives very good results in the preliminary 
tests that have been carried out. 
 
2.2. Associating hand hypotheses in time (AHHT) 
As soon as a hand hypothesis is detected, it has to be tracked over time. This is 
a crucial functionality of the HT component since it provides the temporal 
continuity of hand hypotheses observations.  
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We denote with all hand hypotheses detected at time t and with a 
specific hand hypothesis detected at time t, 1

tH ( )tH i
( )i N t≤ ≤ . A distance measure 

DT( , ) is defined between two hand hypotheses and that 
have been detected at times t-1 and t respectively: 

1( )tH i− ( )tH j 1( )tH i− ( )jtH

 

( ) ( )2 2

1( ( ), ( ))T t t i j i jD H i H j cx cx cy cy− = − + −  (3)

 
In eq. (3), (cxi, cyi) and (cxj, cyj) are the centroids of hand hypotheses and 

. Equation (3) states that the distance between two hand hypotheses is the 
Euclidean distance of their centroids. A hand hypothesis  matches a hand 
hypothesis  if: 

1( )tH i−

( )tH j

1( )tH i−

( )tH j

 

{ }1 11 ( )
( ( ), ( )) min ( ( ), ( ))T t t T t tk N t

D H i H j D H i H k− −≤ ≤
=  (4)

 
Two hand hypotheses  and are assumed to correspond to the same 
physical object if  

1( )tH i− ( )tH j

•  matches   1( )tH i− ( )tH j

• matches  ( )tH j 1( )tH i−

• , where T1( ( ), ( ))T t tD H i H j T− < D D is a predefined threshold depending on the 
image acquisition frame-rate and on the speed of the hands. 

 
For all corresponding hypotheses, their IDs from the previous time step are 

propagated to the current step. All hand hypotheses at time t that have not been 
corresponded with hand hypotheses at time t-1 are assigned new IDs, since 
these are hand hypotheses observed for the first time. 

 
AHHT is performed independently on the left and the right image of the 

stereo-pair. The process is simple and computationally cheap. Moreover, it 
proves very robust in all cases where hand hypotheses do not overlap due to 
occlusions. In the cases of occlusions, AHHT cannot disambiguate hand 
hypotheses. Current developments consider the possibility of initializing a 
Kalman tracker for each new hand hypothesis, which will lead to increased 
robustness in case of occlusions (see section 6 for more details). 
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2.3. Associating hand hypotheses in a stereo-pair (AHHS) 
In order to provide information regarding the 3D position of each hand 
hypothesis, the tracker should also be able to associate hands between the two 
images of a stereo-pair. The AHHS module serves this purpose. 

 
As it has already been stated earlier in this document, it is assumed that 

the position and orientation of each camera of the stereo pair is known with 
respect to a world-centered coordinate system. Based on this information, it is 
possible to compute the rotation matrix R and the translation vector t of the 
relative motion between the coordinate systems of the cameras of the 
stereoscopic system. This, in turn, provides the means to compute the 
fundamental matrix F that codes the epipolar geometry of the stereo-pair: 

 

1
1

1 [ ]
det( ) xF e

A
H∞=  (5)

where 
 

1 1e A t=  (6)

1
1 0H A RA−

∞ =  (7)

 
In the above equations, A0 and A1 are the intrinsic calibration matrices of the left 
and the right cameras respectively, e1 is the right epipole, [e1]x is the skew 
symmetric matrix of the right epipole and H∞ is the homography at infinity. Then, 
it is known [3] that if m0 and m1 are two corresponding points in the left and the 
right images of the stereo pair, then m1 is constrained to lie on the line defined as 
Fm0. 

 
The AHHS module is based on this result to associate hand hypotheses 

between the two images of the stereo pair. Similarly to the case of the AHHT 
module, we denote with all hand hypotheses detected at time t in the left 
image of the stereo pair and with all hand hypotheses detected at time t in the 
right image of the stereo pair. Moreover, and denote specific hand 
hypotheses i and j detected at time t, in the left and right images, 1 ( , 

LH

RH
( )LH i ( )RH j

)
( )

i N L≤ ≤
1 j N R≤ ≤ . A distance measure DS( , ) is defined between two hand 
hypotheses as: 

(LH )i (RH )j
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( ) ( ){ }( ( ), ( )) max , , ,T
S L R i j j iD H i H j d Fm m d F m m=  (8)

 
In the above equation, mi and mj are the centroids of hypotheses and 

, respectively, and d l  denotes the distance of point p from the line l.  A 
hand hypothesis  matches a hand hypothesis  if: 

( )LH i
( )RH j ( , p)

( )LH i ( )RH j

 

{ }
1 ( )

( ( ), ( )) min ( ( ), ( ))S L R S L Rk N R
D H i H j D H i H k

≤ ≤
=  (9)

 
Symmetrically, a hand hypothesis  matches a hand hypothesis  if: ( )RH j ( )LH i

 

{ }
1 ( )

( ( ), ( )) min ( ( ), ( ))S R L S R Lk N L
D H j H i D H j H k

≤ ≤
=  (10)

 
Two hand hypotheses  and are assumed to correspond to the same 
physical object if  

( )LH i ( )RH j

•  matches   ( )LH i ( )RH j

• matches   ( )RH j ( )LH i

• , where T( ( ), ( ))S L RD H i H j T< S

)

S is a predefined threshold depending on the 
accuracy in the computation of the epipolar geometry. 
 
For all corresponding hand hypotheses, the ID of the hand hypothesis in the 

left image are propagated to the corresponding hand hypothesis in the right 
image of the stereo pair. All other non-corresponded hand hypotheses are 
excluded from further consideration in the subsequent process of 3D position 
estimation. Such hypotheses can be due to hands that are visible in only one of 
the two cameras of the stereo-pair.  

 
The above method for associating hands may fail in the case where 

epipolar geometry is not accurately computed. In this case, the threshold TS has 
to be set conservatively to a quite high value, which leaves room for errors in the 
association of hand hypotheses. For this reason, 3D position information from 
previous time instances is used, if available. More specifically, when computing 
distances , the 3D position of the hand hypothesis that results 
form the assumption that hand hypothesis really corresponds to the hand 
hypothesis , is computed. If the resulting 3D position is invalid (in the sense 

( ( ), ( )S L RD H i H j

( )RH j
( )LH i
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that either this position is not plausible or it differs substantially from the hand 
position in the previous time instant) a penalty term is added in the corresponding 
distance measure to guarantee that hand hypothesis  will not be 
considered as corresponding to hand hypothesis . 

( )LH i
( )RH j

 
In general, the camera position and orientation information that is 

computed from the encoders of the stereoscopic system is not accurate enough 
to enable the accurate estimation of the epipolar geometry of the stereo pair. In 
experiments carried out with prerecorded image sequences, the average error of 
image points from their epipolar lines is in the order of 15 pixels. This, in turn, 
affects the robustness of the AHHS module. To overcome this problem, AHHS is 
applied only to hands that appear in the field of view for the first time. As soon as 
this is achieved, AHHT module, which is more robust compared to AHHS, 
assumes the role of propagating the correct hand IDs in both images of the 
stereo pair. This is further exemplified in Fig. 3. 
   

 
Figure 3: Two scenarios ((a), (b)) for achieving the propagation of IDs of hand 
hypotheses both in time and between the two views of a stereo pair. (a) The AHHS 
module is used to associate hands between the left and the right images of the stereo pair, 
at each moment in time. The AHHT module is used to propagate labels in time, only in 
the image sequence of the left camera. (b) The AHHS module is used to associate hands 
only when a new hand hypothesis appears in the field of view. Two instances of the 
AHHT module are then used to propagate the hand IDs in time, independently in the left 
and right image sequences. Since AHHT is more robust compared to AHHS, the second 
approach is adopted.  
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A more accurate computation of the epipolar geometry of the stereo 
system that is derived through image measurements (as opposed to the 
encoders based estimation currently employed) will greatly improve the 
robustness of the AHHS module. Related research at FORTH [4, 5] has resulted 
in an accurate and efficient image-based camera tracking system. Appendix A 
provides some further information regarding this method that can prove 
extremely useful to the HT component.  
 
2.4. Centroid matching (CM) 
The correspondence of hand hypotheses between the left and the right images of 
the stereo pair that has been achieved up to now, leads to a rough 
correspondence between hand centroids. This could be directly used for deriving 
the 3D position of hand hypotheses. However, centroids have been computed by 
the SCD module, as the mean x- and y-coordinate of each skin-colored blob, 
therefore it is not guaranteed that the left and right centroids of the same hand 
hypothesis correspond to the same 3D point. In order to refine this initial rough 
correspondence, a correlation-based matching algorithm is employed. Let m 
denote the centroid of a hand hypothesis in the left image of the stereo pair and 
m’ denote the centroid of the same hand hypothesis in the right image of the 
stereo pair. Then, a model region M around m and a search window S around m’ 
are defined. M is placed within all possible positions in S and a correlation 
measure is computed. The location m’’ in S where the correlation measure C is 
maximized (CMAX) is considered as the refined right centroid of the specific hand 
hypothesis. The process is repeated symmetrically, by defining a model region 
around m’ and a search region around m. If this search gives rise to a correlation 
score greater than CMAX for some point m’’’ in the left image, then we consider 
the (m’’’, m’) pair of centroid correspondences instead of the (m, m’’) pair. This 
centroid refinement process is repeated for all pairs of corresponding hand 
hypotheses. Note that if epipolar geometry was accurate enough, search lines 
(epipolar lines) could be used instead of search regions. This could result in 
substantial reduction of the required computations. However, since the epipolar 
geometry is not accurate enough, this type of optimization has not been taken 
into account. 

 
The correlation measure used in the CM module is inspired by the work of 

Hirschmüller [6] on dense stereo matching. The basic idea behind this selection 
is that the model window M is divided into five overlapping sub-windows, a 
central (C), an upper-left (UL), an upper-right (UR), a bottom-left (BL) and a 
bottom-right (BR). These five windows have a certain overlap each other, as 
shown in Fig. 4. At each placement of the model window M in the search window 
S, five correlation values CC, CUL, CUR, CBL and CBR, are computed 
independently. These values measure the correlation of each sub-window with 
the corresponding image part in the search window. Then, the correlation value C 
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for this particular placement can be computed by adding the values of the two 
best surrounding correlation windows Cmax1 and Cmax2 to the middle one: 

 
C = CC + Cmax1 + Cmax2 (11)

 
This approach uses, in fact, a small central window and supports the correlation 
decision by four nearby windows. This formulation enables the refinement 
process to cope very well with depth discontinuities and occluded/revealed 
regions that introduce errors when conventional correlation is employed between 
the whole model window and the corresponding part of the search window. It 
should be noted that the cases of depth discontinuities and occlusions are very 
common in the particular hand-tracking scenario, where the hand figure is 
typically a small image region, quite closer to the cameras compared to its 
immediate surroundings. 
 

 
Figure 4: The configuration of overlapping windows used in the correlation method 
proposed by Hirschmüller [6].  

 
 
2.5. 3D recovery of the position of hands (3DR) 
The refined centroid correspondences of the hand hypotheses are fed into a 3D 
reconstruction module, which computes the 3D position of each hand hypothesis. 
Two different reconstruction methods have been tested. 
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The first method [7] computes the 3D position (X, Y, Z) of a point P, given 
its projections m0 and m1 in the left and the right image of a stereo pair, as 
follows: 

 

( ) ( )1 1 1 0
2

1 0

m e m H m
Z

m H m
∞

∞

× ⋅ ×
= −

×
 

 

1
0 0[ (0)]X Z A m−=  (12)

1
0 0[ (1)]Y Z A m−=   

 
In eq. (12), m0 and m1 are vectors in homogeneous coordinates, and e1 and 

are defined as in eqs. (6), (7), respectively. Moreover, [ denotes the 
vector that corresponds to the ith row of the inverse of the intrinsic camera 
parameters matrix of the left camera. Equation (12) gives the 3D position (X,Y,Z) 
of a point P with respect to the coordinate system of the left camera. The 3D 
position of this point with respect to the world-centered coordinate system can 
easily be estimated through a rigid 3D transformation. 

H∞
1

0 ( )A i− ]

 
The second method considers directly the intersection of two 3D lines. 

More specifically, one 3D line is defined by 3D points p1 and q1, where p1 is the 
origin of the coordinate system of the left camera and q1 is the 3D position of 
centroid of a hand hypothesis on the left image plane. Similarly, a second 3D line 
is defined by 3D points p2 and q2 where p2 is the origin of the coordinate system 
of the right camera and q2 is the 3D position of the centroid of the same hand 
hypothesis on the right image. Then, the 3D location P of the hand hypothesis is: 
 

( )1 1 1 2 2 2
1 ˆ ˆ
2

P p v s p v s= + + +  (13)

 
where 

( )2 1 2 12
1 2

12

ˆdet p p v v
s

v

−
=  ( )2 1 1 12

2 2
12

ˆdet p p v v
s

v

−
=  

(14)

and 
 

1 1
1

1 1

ˆ q pv
q p

−
=

−
 2 2

2
2 2

ˆ q pv
q p

−
=

−
 

 

12 1 2v v v= ×  
(15)
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If the 3D lines really intersect, then P in eq. (13), is the point of their intersection. 
If the 3D lines are skew, then P is the midpoint of the minimum-length line 
segment that connects the two 3D lines.  

 
This second method provides more accurate 3D reconstruction results 

compared to the first reconstruction approach and therefore, has been adopted in 
the 3DR module of the HT component. 
 
2.6. Temporal smoothing (TS) 
The temporal smoothing (TS) module performs temporal smoothing of the 
derived 3D position of each hand hypothesis, based on the assumption that the 
hand trajectory is smooth as a function of time. The current implementation 
considers 3D positions Pt-2, Pt-1 and Pt of a hand as they have been computed in 
the last three time instances t-2, t-1 and t, and reports the 3D position P defined 
as: 
 

1 20.6 0.3 0.1t tP P P Pt− −= + +  (16)

 
Weights are appropriately adapted in case that the 3D position measurements in 
time instances t-2 and/or t-1, are not available.   
 
3. HT in the context of the ActIPret framework 
The HT component described in the previous section has been initially 
implemented in standard C, as a stand-alone application that takes as input 
sequences of stereoscopic images. This permits extensive, off-line 
experimentation and testing. However, in the context of the ActIPret project, HT 
is on out of many components of a cognitive vision framework. A schematic 
presentation of this framework, which shows the interaction of HT with the rest of 
the components, is shown in Fig. 5. 
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Figure 5: The HT component within the ActIPret framework. The HT component 
interacts with the Image Server and Pose Server components in order to acquire the 
required image, camera geometry and camera calibration data. Moreover, it has to 
communicate with the Gesture Recognizer component to deliver the necessary 
information regarding the position of the tracked hands.   

 
As it is shown in Fig. 5, the HT component needs to communicate with the 

Image Server and Pose Server components in order to acquire the required 
image, camera geometry and camera intrinsic calibration data. Moreover, it has 
to communicate with the Gesture Recognizer component to provide the 
necessary information regarding the position of the tracked hands. The activation 
of the components is accomplished in a top-to-bottom manner. More specifically, 
the Gesture Recognizer activates the HT component, asking for possible hand 
hypotheses within a 3D space of interest (SOI). Then, the HT component 
activates the Image Server and Pose Server components requesting image 
stereo pairs, camera position information and camera calibration data. As soon 
as Image Server and Pose Server respond to the HT component with the 
requested data, detection and tracking of hand hypotheses is initiated and the HT 
component reports the 3D positions of the detected hand hypotheses to the 
Gesture Recognizer.  
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To support the necessary interaction of the HT component with the rest of 
the components in the ActIPret framework, the original, framework-independent, 
core HT functionality has been extended with a framework-dependent layer, 
which supports the necessary communication structures. The interaction of the 
HT component with the rest of the components in the ActIPret framework has 
been verified in several project integration meetings. 
 
 
4. HT performance considerations  
Several tests have been carried out aiming at assessing the functionality and the 
performance of the HT component. Both off-line experiments (involving pre-
recorded image sequences) and on-line experiments have been carried out. Off-
line experiments employed the framework-independent version of the HT 
component, while on-line experiments have been carried-out by employing the 
framework-dependent version of it. The performance of the HT component within 
the framework is relatively difficult to assess because of the complex interaction 
of components. However, it is straightforward to measure the performance of HT 
in off-line experiments. It turns out that one-cycle of operations of the HT 
component takes approximately 75 milliseconds on an Intel P4@1.8 GHz running 
Linux. The cycle includes all HT functionality plus reading a stereo pair of 
640x480 images from disk. The HT may be forced to operate in sub-sampled 
versions of the original images. If the input images are sub-sampled by a factor of 
two (i.e. 320x240 images are employed), then the HT-cycle time becomes 35 
milliseconds. The reason why the performance gain is not directly proportional to 
the input data reduction (i.e. a factor of four) is that the HT always reads full-
resolution images from disk and therefore, disk I/O for image reading takes 
constant time, independent of the operational image resolution.  

 
An important observation is that the hand trajectories computed in full 

image resolution are in close resemblance with the hand trajectories computed at 
half resolution. This means that, at least in the conducted experiments, significant 
speedup can be achieved without sacrificing much of accuracy. Still, a rate of 13 
Hz (full resolution images) or 28 Hz (half resolution images) is considered 
sufficient for the purposes of ActIPret. Detailed quantitative analysis as well as 
monitoring of the performance of the HT component within the ActIPret 
framework is still ongoing tasks. 
 
 
5. Sample results 
In this section, characteristic results are provided from the application of the HT 
component to sequences of stereo-pair images that have been acquired off-line. 
These sequences have been recorded at the premises of Profactor GmbH.  
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In the first sequence (“Sequence17_head”), a human operator 
manipulates a CD player (opens the tray, picks-up a CD, places it in the tray and 
closes the tray). The stereoscopic system does not move in this experiment. The 
full sequence consists of 146 left and 146 right frames. Figure 6 (top to bottom, 
left to right) shows characteristic snapshots from the obtained tracking results. 
Every 10th frame is shown in this figure. For visualization purposes, each hand 
hypothesis appears as a color blob superimposed on the original right image of 
the stereo pair. A red cross marks the centroid of each hand hypothesis. 
Moreover, an ellipse derived from the statistics of each hand hypothesis is shown 
around each color blob.  It can be seen that the system identifies three hand 
hypotheses (1) the head of the human operator, (2) the skin-colored arm of the 
armchair and (3) the hand of the human operator. It can also be seen that the 
coloring of the hypotheses is consistent through out the whole experiment, which 
means that hypotheses are correctly tracked both in time and between the 
images of the stereo-pair. 

 
Figure 8, shows the 3D trajectories computed by the system for the three 

hand hypotheses. The upper facet of the CD player has also been reconstructed, 
as a reference. The trajectory of the operator’s hand seems qualitatively correct. 
In this particular sequence, the arm of the armchair does not move, while the 
head of the operator moves slightly. To measure the stability of the derived 3D 
coordinates, the 3D bounding box of all estimated 3D positions for a hand 
hypothesis has been computed. For the case of the static arm of the armchair, 
the dimensions of this bounding box are 1.2cm x 1.5cm x 1.6cm. 
 

In the second sequence (“Sequence18_arm”), a human operator again 
manipulates a CD player. In this sequence the cameras are mounted on a robotic 
arm that moves, so cameras are also moving in time. The sequence consists of 
134 left and 134 right frames. Figure 7 (top to bottom, left to right) shows 
characteristic snapshots from the obtained tracking results. Every 10th frame is 
again shown in this figure. It can be seen that the system identifies two hand 
hypotheses (1) the head of the human operator and (2) the hand of the human 
operator. It can also be seen that the coloring of the hypotheses is consistent 
through out the whole experiment, which means that hypotheses are correctly 
tracked both in time and between the images of the stereo-pair. Figure 9, shows 
the 3D trajectory computed by the system for the hand hypothesis corresponding 
to the operator’s hand. Since the CD player is not fully visible in this sequence, 
the line segment corresponding to the CD tray has been reconstructed and is 
displayed in Fig. 9 as reference.  
 
6. Extensions under consideration 
3D tracking of multiple hand hypotheses in scenes observed by a moving 
stereoscopic system is a difficult research problem in cases where a robust 
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performance under general conditions is required. The HT component that has 
been developed within the ActIPret project has several attractive features. 
Nevertheless, there are still important improvements that can be made and 
certain research and development activities at FORTH aim towards realizing 
such improvements. Major such improvements are the following: 
• Handling of occlusions: The AHHT and AHHS modules have difficulties in 

associating hand hypotheses in time and between the images of a stereo-pair, 
when hand hypotheses occlude each other in the field of view of either 
camera. Tracking of each new hand hypothesis with a Kalman tracker is 
under development. It is expected that this will have a significant impact in the 
performance of the HT component in cases of occluded hand hypotheses. 

• Providing hand pose information: Currently, each hand hypothesis is 
represented as a point in 3D space. However, in the ActIPret cognitive vision 
framework, it would be also desirable to provide information regarding the 3D 
pose of each hand hypothesis as well as information regarding the 3D 
positions of fingertips. Towards this goal, an alternative model of a hand is 
currently being investigated. A 2D hand blob is modeled as a circular palm 
region. Then, fingers can be modeled as long, skin-colored structures 
emanating from this circular region. The center of the palm can be estimated 
by computing the median coordinates of the image points constituting a hand 
blob, and the radius of the palm-circle as the median of the distances of each 
skin-colored pixel of the blob from the palm center. This simple model is a 
coarse approximation of the shape of the hand and can provide the necessary 
information to compute the 3D position of fingertips and evidence on the hand 
pose.       

• Image-based camera tracking: In the current version of the HT component, 
the camera positions and orientations are provided by the Pose Server 
component which relies on information derived from the encoders of the 
stereoscopic system. This information is not accurate enough, especially in 
the case of moving cameras. Research at FORTH has resulted in a camera-
tracking system that employs point correspondences to robustly compute the 
3D position and orientation of a moving camera. This novel method [4, 5] is 
briefly described in Appendix A and is expected, when employed, to improve 
substantially the camera position and orientation estimation processes, which 
will in turn, improve the accuracy in estimating the 3D position of hand 
hypotheses. 

 
7. Summary 
In this document, a brief description of the Hand Tracker component has been 
provided. The current version of the system is capable of detecting and tracking 
multiple hand hypotheses in scenes viewed by a moving stereoscopic system in 
which each camera has independent pan, tilt and vergence control. The HT 
component operates at approximately 13 Hz in full resolution, 640x480 images 
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on an Intel P4@1.8 GHz running Linux. The computational performance of the 
system can be improved by employing subsampled versions of the original 
images. By reducing the input images to a size of 320x240, the HT component 
operates at 28 Hz, without a considerable degradation of the quality of the 
computed hand trajectories. Ongoing research and development activities are 
focused on (a) improving the robustness of hand tracking in cases of overlapping 
hand hypotheses (b) modelling of a hand hypothesis to permit the computation of 
hand pose information (c) development of an efficient and accurate image-based 
camera tracking system, (d) extensive qualitative and quantitative testing of the 
developed hand tracker and (e) performance optimisations, especially in the case 
of the framework-dependent version of the HT component. 
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Figure 6: Tracking results for the “Sequence17_head” sequence. Each hand hypothesis 
appears as a color blob superimposed on the original right image of the stereo-pair.  
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Figure 7: Tracking results for the “Sequence18_arm” sequence. Each hand hypothesis 
appears as a color blob superimposed on the original right image of the stereo-pair.  
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Figure 8: The 3D trajectories of the hand hypotheses detected in the experiment of Fig. 
6. The top-left and middle-left isolated spots correspond to the motion of the operator’s 
head and of the arm of the armchair, respectively. The trajectory in the center of the 
image corresponds to the hand trajectory. The upper facet of the CD player has also been 
reconstructed, as a reference. 
 

 
Figure 9: The 3D trajectories of the hand hypotheses detected in the experiment of Fig. 
7.  The straight line segment appearing in the right part of the figure corresponds to the 
tray of the CD player. 
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8. APPENDIX A: Image-based camera tracking 
We address the problem of camera matchmoving over a sequence of images 
acquired by a freely moving observer, a task that has a broad spectrum of useful 
applications in domains such as augmented reality and creation of special 
effects. Camera matchmoving is an application involving synthesis of real scenes 
and artificial objects, in which the goal is to insert computer-generated graphical 
3D objects into live-action footage depicting unmodeled, arbitrary scenes. 
Graphical objects should be inserted in a way so that they appear to move as if 
they were a part of the real scene. Seamless, convincing insertion of graphical 
objects calls for accurate 3D camera motion tracking (i.e. pose estimation), stable 
enough over extended sequences so as to avoid the problems of jitter and drift in 
the location and appearance of objects with respect to the real scene. 
Additionally, the placement of the objects with respect to the real scene often 
requires the extraction of limited 3D geometry information; for instance, accurate 
3D reconstruction of a few guiding control points is in many cases sufficient. 
Matchmoving finds several important applications in augmented reality as well as 
the creation of special effects in the post-production industry. To provide the 
versatility required by such applications, very demanding camera tracking 
requirements, both in terms of accuracy and speed, are imposed. 

 
At the core of the proposed approach lies a novel, feature-based 3D plane 

tracking technique. Given a triplet of consecutive images and a plane 
homography between the first two of them, the plane tracker is capable of 
estimating the homography induced by the same plane between the second and 
third images, without requiring the plane to be segmented from the rest of the 
scene. In other words, the proposed method operates by “chaining” (i.e. 
propagating) across frames the image-to-image homographies due to some 3D 
plane. The chaining operation represents projective space using a ``plane + 
parallax'' decomposition, which permits the combination of constraints arising 
from all available point matches, regardless of whether they actually lie on the 
tracked 3D plane or not. Being straightforward to extend over long image 
sequences, plane tracking permits the estimation for each image pair in the 
sequence of the homographies induced by the 3D plane. Knowledge of such 
homographies allows the corresponding projection matrices encoding camera 
motion to be expressed in a common projective frame and therefore to be 
recovered directly. Additional knowledge of intrinsic camera calibration can be 
used to upgrade projective reconstruction to a Euclidean one. In addition to 
camera motion, the proposed method can recover a rough representation of 3D 
structure. Finally, it is shown that the tracked plane can be a virtual one, thus 
raising the implicit assumption regarding the presence of at least one 3D plane in 
the viewed scene.  

 
Figures 10 and 11 provide representative results from a conducted 

experiment that involves augmenting an image sequence with an artificial 3D 
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object. The point features employed in this experiment have been extracted and 
matched automatically [8]. The experiment was performed on the well-known 
Oxford “basement” image sequence. This sequence consists of 11 frames 
acquired by a camera mounted on a mobile robot as it approached the scene 
while turning left. The proposed method was applied to the “basement” sequence 
and the camera 3D locations for each image along with a 3D point model of the 
scene were recovered. Using a few of the recovered 3D points, a wire-frame 
rectangular parallelepiped was inserted into the scene. Specifically, aiming to 
give the impression of an object lying on the floor, the parallelepiped was inserted 
so that its bottom face extends from the top of the second “O” to the bottom of 
the letter “R” in the word “OXFORD”. In a real application, a more complex 3D 
model would have been inserted into the scene with the aid of a 3D graphics 
package. Figs. 10(a)-(f) are snapshots of the sequence resulting by augmenting 
the original one. A top view of the VRML 3D model that was recovered, showing 
also the location of the inserted parallelepiped as well as the camera locations 
and trajectory is illustrated in Fig. 11.  As it is clear from the results, the accuracy 
of camera matchmoving using the proposed method is satisfactory. 

 
The average running time of the proposed matchmoving method for each 

image triplet was 102 ms on an Intel P4@1.8 GHz running Linux. This time does 
not include the time required for matching points among frames; around 350 
points were matched between every pair of successive frames. 

 
For more information regarding the developed method, the interested 

reader is referred to [4, 5].  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 9:  Snapshots of the “basement” sequence (courtesy of the Oxford Visual 
Geometry Group), corresponding to frames 0, 2, 4, 6, 8 and 10, resulting after 
augmenting the original sequence with a rectangular parallelepiped drawn in red. 
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Figure 10: Top view of the VRML 3D reconstruction for the scene of Fig. 9, showing also 
the inserted object and the 3D camera locations; see text for explanation. 
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9. List of abbreviations 
 
ABBREVIATION FULL NAME 

 
AHHS Association of Hand Hypotheses between the images of 

a stereo-pair. 
 

AHHT Association of Hand Hypotheses in Time 
 

CM Centroid Matching 
 

f.o.v Field of view 
 

HH Hand Hypothesis 
 

HT Hand Tracker 
 

SCD Skin Color Detection 
 

SOI Space of Interest 
 

TS Temporal Smoothing 
 

3DR 3D Reconstruction 
 

 
 
 
10. References 
[1] David A. Forsyth and Jean Ponce, "Computer Vision: A Modern Approach", 

Prentice Hall, 2003. 
[2] S. McKenna, S. Gong, Y. Raja, "Modeling facial colour and identity with 

gaussian mixtures", Pattern Recognition, 31(12):1883--1892, 1998 
[3] O. Faugeras, Q.-T. Luong, and T. Papadopoulo. “The Geometry of Multiple 

Images”. MIT Press, 2001. 
[4] M.I.A. Lourakis, A.A. Argyros, “Automatic 3D Camera                           

Matchmoving Using Markerless, Segmentation - Free Plane                           
Tracking”, submitted to the Second International Symposium on Mixed and 
Augmented Reality, (ISMAR 2003), under review. 

 29



[5] M.I.A. Lourakis, A.A. Argyros, “Chaining Planar Homographies: Fast and 
Reliable 3D Plane Tracking”, submitted to the British Machine Vision 
Conference, (BMVC 2003), under review. 

[6] H. Hirschmüller “Improvements in Real-Time Correlation-Based Stereo 
Vision”, In Proceedings of CVPR 01. 

[7] L. Robert, C. Zeller, O. Faugeras, M. Hébert, “Applications of non-metric 
vision to some visually guided robotics tasks”, INRIA RR-2584, Robotvis, 
June 1995. 

[8] J. Shi and C. Tomasi. Good Features to Track. In Proceedings of CVPR’94, 
pp. 593–600, 1994. 

 

 30


	Introduction
	Hand Tracker (HT) component description
	Skin color detection (SCD)
	2.1.1 Basic training and detection mechanisms
	2.1.2 Adaptability

	Associating hand hypotheses in time (AHHT)
	Associating hand hypotheses in a stereo-pair (AHHS)
	Centroid matching (CM)
	3D recovery of the position of hands (3DR)
	Temporal smoothing (TS)

	HT in the context of the ActIPret framework
	HT performance considerations
	Sample results
	Extensions under consideration
	Summary
	APPENDIX A: Image-based camera tracking
	List of abbreviations
	
	
	
	
	
	
	ABBREVIATION
	FULL NAME







	References

