

DELIVERABLE D5.1 (v1.0)

Definition of the Conceptual Language and
the Notation for the Activity Plan

Draft/Final Version

15 November 2002
Authors: Jonathan Howell, Kingsley Sage, Hilary Buxton

Project acronym: ACTIPRET
Project full title: Interpreting and Understanding Activities of
 Expert Operators for Teaching and Education

Action Line IV.2.1:Real Time Distributed Systems (Cognitive Vision)
Contract Number: IST-2001-32184

2

Contents

1 Introduction.. 3

2 Conceptual Language and Activity Definitions within the ActIPret Demonstrator 3

3 Definition of Conceptual Language .. 4

3.1 Overview.. 4

3.2 Formal definition of Conceptual Language ... 4

3.3 Example Conceptual Language File ... 4

3.4 From Conceptual Language to Activity Plan... 5

4 Activity Definitions... 9

5 Relationship to Cognitive Vision Framework.. 11

3

1 Introduction

This deliverable document provides details of the Conceptual Language (CL) and activity
definitions used by the ActIPret Demonstrator (AD). Section 2 describes how the CL and
activity definitions relate to the AD functional components. Section 3 contains a formal
abstract definition of the CL together with an example for the initial scenario. Section 4
provides an overview of how activity definitions embedded with the Activity Reasoning
Engine (ARE) are used to create plan elements using the CL. Section 5 describes how this
work relates to the overall principles and requirements of the Cognitive Vision (CV)
framework.

2 Conceptual Language and Activity Definitions within the
ActIPret Demonstrator

The Conceptual Language (CL) provides all of the domain specific knowledge for a scenario
that is required by the ActIPret Demonstrator (AD). It specifies the types of objects that the
Activity Reasoning Engine (ARE) will be able to produce instantiated concepts for and the
form of the language output of the ARE to the Activity Plan Generator (APG). The CL also
specifies the form of the language output from the ARE to any other components e.g. VR
reconstruction, if the requirements of that language output are different to that provided to the
APG.

Output from the ARE represents the actions events and activities in the scenario as detected
by the AD, derived from the control exercised by the ARE over the lower level components.
The CL therefore specifies the language form of the native activity plan that is generated by
the AD as it observes the scenario. The CL does not, however, specify the control
mechanisms that the ARE uses to generate these actions, events and activities. These
activity definitions are a function of the ARE.

Activity definitions are domain independent generic activity (vision based) definitions that
reside in the ARE that contain information about specific pre-conditions and temporal
sequencing within individual activities. For example, an activity definition for ‘pickup’ includes
control data about which components should be selected to determine an instance of that
activity and what top down control needs to be exercised to detect that activity efficiently.

Activity definitions within the ARE will be re-usable with different scenarios. In order to use
the AD with a different scenario, it is necessary only to change the CL input specification.

The CL needs to be able to efficiently specify the proposed manipulation tasks that the
ActIPret system is proposing to interpret. The efficiency of this representation will depend on
the granularity of the concepts used - too high ('to put a CD into a CD-player, you put a CD
into a CD-player') leads to no explanation being available for training new users, too low ('to
put a CD into a CD-player, you find a CD, make sure your hand is empty, move your hand
near the CD, open your hand, etc') leads to too much explanation being available. The level
of granularity of individual statements made in the conceptual language will therefore be
related to the required specificity of explanation, i.e. what level of instructions will be most
intuitive to the human user.

The initial version of the CL presented here is constrained to independent action types. That
is, there is no scope for refinement of any of the action types into more specific forms that
may be more appropriate and intuitive for the human expert. A future refinement of the CL
will allow for hierarchical relationships between action types. For example, putdown is a

4

generic action type (e.g. X puts Y down on Z) that can encompass a hand placing a CD on a
table top, or putting a book on a shelf and so on. A more specific action type such as loading
can be derived from putdown where it refers to any hand putting down any CD on any CD
player (i.e. specific categorisations exist for each action agent).

3 Definition of Conceptual Language

3.1 Overview

The Conceptual Language (CL) specifies:

• the types of objects that the Activity Reasoning Engine (ARE) will be able to produce
concepts for (using <object_type> declarations);

• properties of those objects that will enable the ARE to exercise an efficient control
strategy over the lower level components within the ActIPret Demonstrator (AD)
(using a <properties_list> embedded within the <object_type> declaration);

• the form of the language output of the ARE to the Activity Plan Generator (APG)
(using <action_type> declarations>;

• the form of language output from the ARE to any other components e.g. VR
reconstruction if the requirements of that language output are different to that
provided to the APG (using <action_type> declarations).

3.2 Formal definition of Conceptual Language

A simple formal definition of the Conceptual Language (CL) is provided in Box 1:

start(<ScenarioName>)

Comment s may appear anywhere in the file
<declarations>

end(<ScenarioName>)

<declarations> =
<object_type1>, …, <object_typeL>
<action_type1>, … , <object_typeM>
[opt]<subpart_type1>, … , <subpart_typeN>

<object_type> =
object_type{<object_name>, <object_ref>, <object_model>,

<properties_list>, [opt] <subparts_list>}

<action_type> =
action_type{<APG_language_form>, <natural_language_form>}

<subpart_type> =
subpart_type{<lingustic_description>, <part_name_from_object_model>}

Box 1: Simple formal definition of the Conceptual Language

3.3 Example Conceptual Language File

An example Conceptual Language definition file for the CD scenario is presented in Box 2.
This file provides specific information about the types of objects for the scenario and their
properties, and the generic activities that can be performed on them:

5

start(playcd)

object_type{“Hand”, 0, handmodel,
properties={hand, container,singular,!pickupable,!subparts}}

object_type{“CD”, 1, cdmodel,
properties={!hand,!container,!singular,pickupable,!subparts}}

object_type{“CD-Player”, 2, cdplayermodel,
properties={!hand,container,singular,!pickupable,subparts},
subparts={power_button,play_button,eject_button })

object_type{“Desk”, 3, nondef, properties={}}

subpart_type{ “Power Button”, power_button}
subpart_type{“Play Button”, play_button}
subpart_type{ “Eject Button”, eject_button}

In this example there is only one hand

action_type{(BUTTON_PRESS,X,Y,Z):
“Use Hand to press the Z on the Y.”
}

action_type{(HAND_PICKUP,X,Y,Z):
“Use Hand to pick up the Y from the Z.”,
}

action_type{(HAND_PUTDOWN,X,Y,Z):
“Use Hand to put the Y down on the Z.”
}

end(playcd)

Box 2: Example Conceptual Language definition file

3.4 From Conceptual Language to Activity Plan

3.4.1 Structure of the Activity Plan

The observed scenario is represented by the ActIPret system in the Activity Plan Generator
(APG) that provides all relevant information about how the task is performed. In its native
form (i.e. when considered as distinct entity divorced from the Conceptual Language CL) the
APG contains two distinct sections:

• The first represents the declarative semantics of the task – information about objects
referred to during the description of the task and optionally, specifying behavioural
models for these objects. These declarative semantics are taken directly from the CL
that was used to generate the APG.

• The second contains individual statements, the form of which is specified by the CL,
describing the specific sub-tasks required to fulfil the overall task and their temporal
sequencing.

This second part can be considered at 3 levels:

• The atomic plan primitive: this is an instantiated concept function generated by the
ARE. The atomic plan primitive is derived from of a combination of vision primitives
(actions, activities or events) defined within the ARE. The primitive cannot be
decomposed further at the planner level.

• The intermediate instruction: this represents an instantiated non-empty set of
atomic plan primitives which is a significant part of a scenario, such as a single
concept, e.g. 'pick up an object from somewhere' or 'press a button on an object', or a

6

combination e.g. 'Put the CD in the CD-player' (requires pick-up and put down). The
sequence of instructions which represent a particular scenario is termed an activity
plan.

• The scenario: this is an instantiated non-empty set of intermediate instructions and
provides a general description of the task, such as 'play a CD on a CD-player' or
'make a cup of tea'. This level could be used to create an index of all known scenarios
each one of which a user could select in order to find tutorial directions.

We can visualise a single scenario exemplar with end-to-end significance as a linear finite
state automaton:

Key:

Triangles represent plan start and end points
Black circles represent plan atomic primitives

Figure 1: Single scenario exemplar represented as a Finite State Machine.

We can visualise a conceptual hierarchy with intermediate plan concepts formed from
ordered sequences of atomic plan primitives as a graph. Acquisition of the scenario
exemplars could now occur in smaller sections as defined by the intermediate plan concepts:

Find hand (<x>) Find CD(<y>) pickup(<x>, <y>)

Pickup CD

Find player (<p>) Locate button () Press (<x>, <p>,)

Open CD player

Open door (<p>) Load(<y>, <p>) Press (<x>, <p>,)

Put CD in player

SCENARIO

Figure 2: Hierarchical representation of plan concepts

The expert demonstrates each intermediate plan concept independently. This could be
achieved either as part of the learning phase (the notion of a learned sequence) or through
more complex flow control within the expert mode. Finally, the expert demonstrates/specifies
the intermediate concept sequencing to complete the plan. Now in tutor mode it is possible to
recognise an end-to-end exemplar that is composed of any combination of the sub-structure
ordered sequences. The hierarchical approach can be represented graphically as finite state
automata:

Linear planning: Activity plan consisting of 1 scenario exemplar
(1 execution path only)

7

Key:
Triangles represent plan start and end points
Black circles represent atomic plan primitives
Square represent intermediate concept start and end points

Figure 3: More complex types of planning represented as Finite State Machines

3.4.2 Types of atomic plan primitive

Body movements

For the proposed manipulation tasks, the important information about the user's activity will
be related to what they are doing or are intending to do with objects in the scene, e.g. picking
up, putting down, rotating an object, pressing buttons, etc. Other movements, such walking,
rotation of body to face a new direction, movement of hand or body to align towards an
object, are predictive of an activity but not a task-relevant activity in themselves. For
instance, the action 'open the door' may require the expert to move to and align their body
with the door before actually holding and turning the door handle, but how much movement
is required for that alignment will be related to where they start from, not to the task itself.

Non-alignment movements, such as standing up or sitting down are similarly predictive of an
activity, rather than a task-relevant activity.

Manipulation of static 'non-pickupable' objects

Since static objects cannot be moved, the types of manipulation possible with them will be
concerned with changing some internal state of theirs, e.g. 'Pressing the 'on' button', 'Open
the CD-player'. Actions leading to state change which have no visual evidence (e.g. pressing
a button) will need to be inferred (if a finger hovers for more than a second very close to a
button, we will assume it has pressed that button) or signalled via some non-visual route

Linear planning: Activity plan consisting of 3 scenario exemplars

(total of 3 possible execution paths)

Hierarchical planning: Activity plan consisting of 2 intermediate plan concepts each with
3 exemplars.

(total of 9 possible execution paths)

8

(e.g. CD-player directly telling the system what state it is in. Unfortunately, the recognition of
the change of internal state will usually require object-specific knowledge (e.g. the 'on'
button is at the top left corner of the front panel of the CD-player, when the CD-player is
opened, a platter will appear from the front panel). In some cases, this state change will not
even be evident visually (e.g. CD-player 'play' button pressed starts the music without a
visual change) and will require non-visual cues. An example of a static manipulation action
would be :

press_button(button, object)

Box 3: Example static manipulation action

It is implied that this is done by a hand, the two parameters referring to the specific button
pressed, and the object on which the button is found (the location and functions of buttons
will need to be specified in the learning phase).

Manipulation of moveable 'pickupable' objects

Generally, the manipulation of moveable objects will involve changes in the objects location,
not its internal state (exception e.g. putting tea in a teapot, turning a door handle and pulling
the door). Therefore the major actions for the 'put CD into CD-player' scenario would be
picking up a CD and putting it down again. An example of moveable manipulation actions
would be:

pick_up(object, location)
put_down(object, location)

Box 4: Example moveable manipulation actions

For both of these, it is implied that this is done by a hand, the two parameters referring to the
object being picked up or put down, and the location where this is done (this can either be
some recognised area or object, or 'nondef' which is a task-irrelevant area of the scene, e.g.
anywhere on a table).

3.4.3 Construction of the Activity Plan

The Activity Plan Generator (APG) for a specific scenario is constructed during the learning
and expert phases, and interrogated during the tutor phase. The learning phase determines
the objects relevant to the scenario and their behavioural models. The expert mode extracts
linear sequences of atomic plan primitives from each demonstration of the task by the expert,
and combines these either incrementally or at the end of the expert phase into a composite
representation which reflects common patterns of actions or required sequences of steps for
the scenario. Intermediate instructions can also be determined by the expert as this stage, in
order to clarify the important steps in the scenario.

9

3.4.4 Example Native Activity Plan

This shows a possible native activity plan written in the Conceptual Language:

#include “playCD.def”

button_press(button0, cdplayer0)
button_press(button1, cdplayer0)
pick_up(cd0, nondef)
put_down(cd0, cdplayer0)
button_press(button1, cdplayer0)
button_press(button2, cdplayer0)

Box 5: Activity Plan written in the Conceptual Language

This is a record of the concepts encountered by the AD during an expert mode phase using
the “playCD.def” definition file. In tutor mode, this can be used to create natural language
instruction for the task or to run a VR demonstration.

Use Hand to press the Power Button on the CD-player.
Use Hand to press the Eject Button on the CD-player.
Use Hand to pickup the CD from the desk.
Use Hand to put the CD down on the CD-player.
Use Hand to press the Eject Button on the CD-player.
Use Hand to press the Play Button on the CD-player.

Box 6: Example natural language output from Activity Planner

4 Activity Definitions

The activity definitions contain the domain independent code for specific activities. These are
executed in the Activity Reasoning Engine (ARE) for the creation of hypotheses and
concepts. Once a hypothesis is initiated, they control the collection of supporting evidence
and the signalling of confirmed concepts that are recorded in the activity plan.

10

// Actipret action pseudo-code definition (domain independent)
// ===
//
// hypothesis for action: pick_up
//
// input: object ref_object - marker for an object that has
// ‘hand’ properties (allows for multiple hands)
// output: object i - marker for object successfully picked up by ref_object
// (null if fails)

object i pick_up(object ref_object)
{
 //preconditions: ref_object must have 'hand' properties:

 ref_object_type =
visual_index(MAX_BELIEF,object_model, ref_object);

 if (properties_of(ref_object_type) includes ‘!hand’)
then return null;

 //and must observe 'move_out' gesture:
 if (visual_index(GESTURE, ref_object) != 'move_out')

then return null;

 //and hand must not be holding something:
 if (visual_index(EMPTY, ref_object) == false)

then return null;

 //monitor ref_object position to predict
 // suitable (pickupable) objects:

 X=[]; //start with empty set of candidate objects X

 //---
 //loop until hand moves back in or hand becomes full:
 //(needs to be threaded so as not to halt other processes)
 {
 //stop updating if hand so close it occludes object
 if (visual_index(MIN_DISTANCE, X, ref_object) > 5cm)
 {
 // identify updated set of candidate objects
 X=visual_index(FIND_PICKUPABLE_ON_TRAJECTORY,ref_object);
 }
 }
 until (visual_index(GESTURE, ref_object) == 'move_in')
 or (visual_index(EMPTY, ref_object) == false);
 //---

 //make sure ref_object is now full:
 if (visual_index(EMPTY, ref_object) == true) then return null;

 //check for a single object no longer where it used to be
 i = visual_index(CONFIRM_LOCATION, X);
 //(returns set of markers no longer in previous location)

 //check that i not 0 or > 1
 if (members(i) > 1) or (members(i) < 1) then return null;

 // at this stage i = object picked up by ref_object

 //get where i was picked up from ('nondef' if not task-relevant):
 location loc = visual_index(PREVIOUS_LOCATION, i);

 //send message to visual index: i and loc are now task significant
 visual_index(MAKE_PERMANENT, i);

 if (loc != 'nondef') then visual_index(MAKE_PERMANENT, loc);

 //send message to control policy that hand_pickup action perceived
 control_policy(HAND_PICKUP, ref_object, i, loc);
 //controls conversion into concept, activity plan

 return i;
}

Box 7: Example of a domain independent vision based definition of action type

11

5 Relationship to Cognitive Vision Framework

The Conceptual Language (CL) and Activity Reasoning Engine (ARE) support the principles
of Cognitive Vision as initially defined in Deliverable 1.1.

The specific aspects of Cognitive Vision addressed in this deliverable are:

• Control

⇒ Resource management within the collection of supporting evidence and the
setting of priorities within the Control Policy.

⇒ In control structure terms, ActIPret is task driven. At the most abstract level,
we use rules to guide our expectation associated with the current vision task.
These rules are embodied in the form of a control policy. At the different levels
of the system appropriate knowledge arising from the control policy will
constrain the processing. Our expectations are defined in the context of the
chosen scenario (encapsulated in our Conceptual Language) so our control
policy can capture this sense of purpose.

• Reasoning

⇒ The Conceptual Language scenario definition files give task-specific cues for
the appropriate interpretation of the domain independent activity definitions.

⇒ A CV system must be capable of using the knowledge encapsulated using its
representation schema to guide the processing based on expectation (control)
and to provide the user with task relevant explanations of derived inferences.

⇒ More specifically, the building of sequences of actions, activities, events and
object and behavioural models using the various representation schema
within ActIPret is synonymous with the synthesis of an activity plan (“activity
planning”) for the scenario as demonstrated by the expert.

• Memory

⇒ The activity definitions provide a framework for the creation and maintenance
of hypotheses over time.

⇒ A CV system needs to be capable of representing and storing (cf. memory)
data about task relevant objects and behaviours. Such representation schema
need to reflect the requirements of the vision task. Traditional approaches to
representation tend to focus on hand-crafted schema that have little generality
outside of their specific application. Representations for CV applications
reflect whether a task is concerned with categorisation (requiring generalised
representations capable of supporting decisions such as “some type of car”)
or recognition and identification (capable of deciding “this particular instance
of car”). Different levels of task abstraction require different types of
representation schema and a CV system needs to be able to choose the most
appropriate for any particular task. Representations may be organised into
hierarchical systems such that specific schema can be derived from more
generic

• Learning

⇒ At this stage much of the model information is provide manually in the notional
off line learning phase. The learned object models are currently contained in
the scenario definition files. An expansion of learning mechanisms will be
addressed in task 5.3. This will likely incorporate hierarchical CL action types
as described at the end of section 2.

