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1 Introduction

This deliverable document provides details of the learning of activities in the Activity
Reasoning Engine (ARE) of the ActIPret Demonstrator (AD) from perceptual tasks WP2 and
3 and the relationships of WP4. Section 2 describes how activities are currently recognised
using reasoning based on recognition, rules and hand-coded Bayesian Belief Networks
(BBNs) with a set of spatial relationships. Section 3 discusses how these principles can be
adapted for learning.

2 Overview of Recognition of Activities

This deliverable develops the ideas introduced in Deliverable 5.1: the form of the conceptual
language and activity definitions for use within the ActIPret Demonstrator (AD). These allow
the production of activity plans from observed scenarios. The current implementation of the
ARE is for `expert mode' operation only

The activity planning functionality originally intended for the Activity Reasoning Engine (ARE)
component has been transferred to the USER(HMI) component. The ARE remains
responsible for activity recognition and attentional control, and USER(HMI) still controls the
AD operational phase (see Deliverable 1.3).

Fig. 1 shows how activity reasoning is performed in the ARE. Early attentive and full attentive
cues based on hand gesture information and object relationships are requested from the GR
and ORG components. Once received, these cues either create or update current activity
hypotheses in conjunction with object state information contained in the Visual Index.
Confirmed hypotheses become concepts and are passed to the USER(HMI) to be added to
the scenario activity plan. Any object references attached to them are retained as Permanent
Objects, see Section 2.2, which can be cross-referenced with later activities.
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Figure 1. Diagram of activity dataflow in the ARE.

2.1 Control Policy

The Control Policy controls the overall operation of the AD and is represented a hierarchy of
meta rules or overriding priorities for processing across the entire framework. Currently, we
use simple production rules but these could be replaced by a Dynamic Decision Network
(DDN).

Three rules are currently used in the ARE:

• Rule 1: IF (no beliefs) THEN ‘Find a Hand’

‘Find a Hand’ is implemented via the ‘HandInfo’ service, connecting the GR and ARE. If
the service has not been established, it is started. This in turn, starts a ‘TrackObject’
service between the HT and GR, which provides hand candidate information. The
existence of such hand candidates will change the internal ARE object state ‘HandExists’
from false to true.

• Rule 2: IF (‘HandExists’ is true) THEN ‘Traverse Hypothesis Creation Tree’

This rule controls the creation of activity hypothesis Dynamic BBNs according to various
hand states and predictive cues, see Fig. 2. Once the ARE has a hand reference object,
it can start the two Object Detector and Tracker (ODT) component services:
‘ObserveObjectRelations’ and ‘GetLostFoundObjects’, see Section 2.4.
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• Rule 3: IF (predictive cues found) THEN ‘Update Current Hypotheses’

This rule minimises computational load by only evaluating current activity hypotheses
when relevant new information is available. Hypotheses that ‘time out’ due to lack of
confirmatory evidence can either be allowed to persist until some unrelated new activity
begins or cleared in a periodic round-up in slack processing time. Fig. 3 shows an
example hypothesis BBN.

2.2 Visual Index

The Visual Index is a store of mid- or long-term information, everything relevant to the current
scenario that cannot be stored in the short-term activity hypotheses, which are discarded
after use. The two main parts of the Visual Index are the permanent object references and
internal state information for the scenario, see Fig. 2:

The Permanent Objects are object references linked to activity concepts, which need to be
retained throughout the life of the scenario for the construction of the Activity Plan at the end.
The permanent object references can also be used by current activity hypotheses, allowing
any object to be referred to by more than one concept.

The internal states for objects in the scene consist of two parts:

• For a variable number of hands: hand(s) exist, hand(s) empty/full, hand(s)
moving/static.

• For any manipulable object(s) (in this case, cdplayer): object-specific state (eg. on/off,
open/closed, empty/full) as defined in the scenario definition file.

2.3 Activity Hypothesis Creation

The creation of new activity hypotheses is based on pre-attentive cues only, see Fig. 2.

Low-level information about hand candidates provided via the ‘HandInfo’ service is used to
update two internal states within the Visual Index: ‘HandExists’ and ‘HandMoving’.



6

Figure 2. Binary tree for generation of activity hypotheses in the ARE, based on
early attentive hand and object cues.

Four early attentive cues are used:

• Hand Moving – this is flag that is set whenever the change in position of the hand(s)
in the scene goes above some threshold value. This is a fundamental predictive cue,
as no new hypotheses can be created without it.

• Hand Full – this is maintained as an internal state within the Visual Index. Initially, it
is assumed that any hands are empty when first found in the scene. They can switch
to full only after a ‘Pick Up’ activity has been observed, and then switch to empty
again only after a ‘Put Down’ activity.

• Hand Near Pickupable Object

• Hand Near Non-Pickupable Object

2.4 Hypothesis Control and Concept Creation

Rule 3 of the Control Policy (see Section 2.1) restricts the updating of current activity
hypotheses. Any hypothesis that has a terminal query node value above a certain threshold
is converted into a concept.

When a concept is created, any object references attached become permanent: this allows
common references in the Activity Plan to be unified at the end of the scenario. Any other
hypotheses contained in the ARE are then deleted, based on the reasoning that only one
activity can be observed by the AD at any one time (mutual exclusivity).
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Activities are represented internally as Bayesian Belief Networks (BBNs) using a causal
inference forward chaining procedure (from evidence to query variables) defined over
Directed Acyclic Graphs (DAGs). An example BBN for the activity ‘pickup’ is shown in Fig. 3.

Figure 3. Example activity BBN representing the ‘pick-up activity.

The root nodes of the BBN correspond to data derived from the early attentive and full
attentive cues. The BBN then specifies how to combine this data to probabilistically
hypothesise that the activity has occurred. The directed arcs of the BBN specify conditional
independence assumptions. The probability value associated with the terminal leaf or ‘query’
node quantifies belief that the activity has occurred.

As well as taking data in real time from the root nodes, BBNs can have additional internal
nodes that enable them to represent emerging activities in a useful manner. The BBN in
Fig. 3 represents an activity at just one time step. This model is then rolled out over time to
provide a Temporal Bayesian Belief Network (TBBN), or Dynamic Belief Network (DBN). In
the case of ‘pickup’ this involves propagating each node to itself from one time step to the
next via a temporal update rule. For the root nodes, this simply means ensuring that these
values are updated in real time. The temporal update rules for the internal nodes are more
complex and determine the BBNs ability to represent sequenced activity sub-structure. An
example of such a temporal update rule is shown in Fig. 3 for the internal ‘mid-point state’.
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The rule specifies that the value of this node ‘latches’ at 1 when the necessary input
conditions are achieved. This value remains latched even when the input nodes are no
longer subsequently satisfied. This rule allows the BBN to represent two serial elements of
activity sub-structure in one compact model. The Activity Reasoning Engine will require
additional mechanisms to manage such hypotheses to ensure that partly fulfilled hypotheses
do not remain in the system unchecked. We plan to use a temporal erosion scheme so that
the belief in such internal nodes decreases as a function of time. Partly fulfilled hypotheses
that do not result in concept formation within a set period will be garbage collected.

Currently in the AD framework, the ‘RecogniseGesture’ service supplied to the ARE from the
GR component is implemented by a TDRBF network [1,4]. This provides confidence levels
for either the ‘Reach In’ or ‘Reach Out’ gestures having been observed. To cope with lateral
movements, it is planned to add a positionally-independent third gesture.

The activity BBNs use 4 types of full attentive evidence:

• Object Lost Near Hand - The ORG reports the loss of any tracked object that had
been sufficiently close to the hand(s) in the scene. This cue provides confirmation for
a `Pick Up' activity hypothesis via the `hand empty' internal state changing to `hand
full', allowing it to be transformed into a concept.

• Object Found Near Hand - The ORG reports any new objects found to the ORG.
This cue will provide crucial confirmation for a `Put Down' activity hypothesis, allowing
it to be transformed into a concept.

• ‘Reach In’ Gesture Observed

• ‘Reach Out’ Gesture Observed

3 Automation and Learning

3.1 Learning Activities
The learning of activities is a key aspect of ActIPret and arises at 2 different scales:

• In the expert phase where we are interested in learning the sequencing of activities to
form a high level description of the scenario as an Activity Plan;

• In the learning phase where we are interested in learning the structure of the activities
themselves.

3.2 Learning in the expert phase
In the expert phase, the structure of the activity BBNs is known apriori and we are concerned
primarily with determining the correct sequencing of activities to form the high level
description of the expert carrying out the scenario i.e. the Activity Plan. This description is
formed from two different types of information:
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• declarative data that declares the existence of cetain objects and their properties; and

• the sequences of concepts derived from the activity BBNs.

The declarative data represents additional apriori scenario domain knowledge that is relevant
to carrying out the scenario task. Some of this data can be derived from the early attentive
cues (such as there exists a hand with a given reference label) and some of it is non-visually
derivable data that is provided by an external agent (such as objects with categorisation CDs
can be picked up and objects with categorisation CD-player cannot be picked up).

The number and topology of concept sequences will depend on the number of scenario
exemplars and subsequent interaction by the expert. If the expert teaches the system just
one scenario exemplar, then the sequence data would just consist of 1 linear set of concepts.
This single ordering of activities would be the only one that the system would know about
and be able to measure against in the tutor phase. Any deviation from that strict sequencing
would be identified as an error by the novice user. If the expert teaches the system using a
number of different activity sequences then the resulting Activity Plan would consist of a
number of parallel, but independent, sequences. Parsing of the Activity Plan during the tutor
phase would enable the system to determine whether the novice user’s activity sequence
was compatible with any of the parallel sequences during the tutor phase.

A further level of sophistication would enable to expert to demonstrate scenario sub-
sequences with a hierarchical overall structure. The sub-sequences would correspond to
sections of activities that could be carried out in a number of different temporal orders.
Learning at this level of sophistication would require additional input from the expert in the
form of sub-structure begin and end markers and probably some kind of visual Activity Plan
editor.

3.3 Learning the structure of activities in the learning phase
The discussion thus far has assumed the availability of hand coded activity BBNs that use a
combination of root nodes derived from early attentive and full attentive cues and internal
nodes to determine whether an activity has occurred. The activity BBNs are coded as
encapsulated C++ classes and are intended to be scenario independent as far as
practicable.

It is desirable to be able to learn the structure of relevant activity BBNs during the learning
phase. That is, the expert provides visual examples of what it means to pickup an object and
the system generates its own activity BBN accordingly. This is a very challenging task. In the
expert mode, the system relies on the Control Policy meta rules to know which services to
switch on and off. These meta rules then determine which early attentive and full attentive
cues are available. The presence of these cues then provide root node inputs to the activity
BBNs. If we want to learn activity BBNs in the learning mode, there are a number of issues:

• if we assume that the Control Policy rules are available, then the problem reduces to
establishing activity BBNs that combine the cues as root nodes together with some
additional internal structure and a set of temporal update rules that produce a network
with a maximum probability output at the terminal node at the point in time when the
expert signals that the activity is complete and lower values at the terminal nodes at
other times; and

• if we assume no Control Policy knowledge, we need knowledge about as many cues
as possible simultaneously as well as all structure and update rules for the previous
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case. This would involve starting as many different services as possible for all objects
and trying to extract the activity relevant cues and building the activity network
structure accordingly.

Assuming no Control Policy task control is too difficult a problem to contemplate, but a
scheme for the automatic deduction of activity network structure assuming a Control Policy is
feasible, although challenging. It would require both positive and negative examples of the
activity and some additional input from the expert as to how successful completion of the
activity affects some of the early attentive cues (e.g. the early attentive cue ‘hand full’ is
inferred by the successful completion of the pickup activity. There is no component within the
system that is capable of determining the state of this cue by visual means alone). The
learning process would also require the expert to somehow specify the value of the terminal
node as a learning goal. This could be a Boolean proposition (the terminal value is 0 and
becomes 1 at some time t) or continuous (the expert uses a graph to visually determine a
value for the terminal node as a function of time, using the continuous value to indicate that
the activity is becoming more or less likely as it emerges with time). With these inputs, the
task of learning the activity BBN becomes one of finding an activity model in a space of all
possible models with root nodes, internal nodes and temporal update rules that best
reproduce the terminal node values specified over time with the additional constraint that the
model be as reasonably small as possible. This last point is important as otherwise the
learning process would use an arbitrarily large system of internal nodes that may well be able
to produce the desired functionality but tell us little about the real structure of the activity, and
would not provide a readily interpretable or computationally efficient solution. This is a similar
process in principle to Structural Expectation Maximisation (SEM) learning [2] for general
Bayesian Networks.

The fit between a candidate activity BBN and the training data would be determined by a
scoring process. This process would reward correct classification of positive and negative
examples but also incorporate a penalty term for network complexity (number of internal
nodes). There are a number of types of search space variables:

• The root nodes: a small number in the case of the pickup example;

• Node connectivity: can be represented as a N*N matrix where N is the number of
nodes although we do have the constraint that the network is a DAG;

• How to combine multiple inputs to any node: this could take the form of a simple
Conditional Probability Table (CPT) in the case of all discrete parent nodes, or more
complex parameterised schemes such as Gaussians or softmax (logistic) functions in
the case of continuous or mixed discrete and continuous parent nodes; and

• Temporal update rules for each node: could be as simple as update a real time
value to an arbitrarily complex activation function based on node values in current
and previous time steps.

As the search space for even simple activity BBNs is highly combinatorial, we will investigate
whether optimisation techniques such as genetic algorithms are appropriate.

4 Future Work

Even with multiple active cameras, there will remain problems of ambiguity and occlusion
that we believe could be solved with an eye-tracking camera. Cognitive studies of eye
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movement [3, 5-7] suggest that the subject’s focus of attention is engaged in on-going
purposeful activty and that eye movements are closely related to the objects being
manipulated in the tasks. Our initial tests conducted using the CD scenario have shown clear
prediction of future activities using gaze position.

There will still be insufficient information from visual input for the effective recognition of
some fine motor-control activities, such as pressing buttons. We can go some way in
deducing what the intent of the subject is, but this will be essentially guesswork, reliant on
compliancy (we assume our experts will not try to deceive us).
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