

Interpreting and Understanding Activities of Expert Operators for Teaching and Education

 M:\Projekte\Aktuell\EU\ActiPret\Deliverables\WorkingDirectory\D6.3\D6.3.doc

DELIVERABLE D6.3 (v1.0)

Description of methods to provide
investigative behaviours and their

evaluation

28 April 2004

Authors: Gerald Umgeher, Christof Eberst

Project acronym: ACTIPRET
Project full title: Interpreting and Understanding Activities of

Expert Operators for Teaching and Education

Action Line IV.2.1: Real Time Distributed Systems (Cognitive Vision)
Contract Number: IST-2001-32184

 - 2 -

Contents

1 Introduction ...3
2 Active Vision System...3

2.1 Benefits and drawbacks ..3
2.2 Active Vision in ActIPret ..3

3 Concept...4
3.1 Shared responsibility ...5
3.2 Behaviour control mechanism ...6

4 Implementing behaviour based control aspects in distributed components according
to the concept..11

4.1 Overview ...11
4.2 Setting up the connection to the View Contract Manager13
4.3 Setting up the connection to the View Controller ..14
4.4 Sending the View Request ..14
4.5 View dependent components in ActIPret ..15

5 Experimental evaluation..16
6 References..20

 - 3 -

1 Introduction
This deliverable presents the design of the methods developed within WP6, which deals
with attentive and investigative behaviours and their co-ordination. In a system like
ActIPret, which has restricted resources, it is essential to control the processing of visual
behaviour / services. The most restricted resource in ActIPret system is the view1
therefore handling the resource “view” is of the main interest in WP6. A fitting view is
vital for the vision components to allow robust and improved performance ([1][2][3]). One
option how the resource view can be handled in a more intelligent manner is to use
active vision systems.

2 Active Vision System
The following section 2.1 will give a short overview of the benefits of an active vision
system and which additional afford is necessary to handle such a system. Section 2.2
presents the hard- and software used in the ActIPret system for the active vision system.

2.1 Benefits and drawbacks
An active vision system compared to the classical static approach is able to interact with
the environment and can adapt its view point actively to unexpected situations and
exceptions. The scene of an active system is less restricted since the camera can adapt
its position to provide non-discrete dynamic view points, that satisfy dynamically
changing constraints best possible and which can be used to reduce the amount of
necessary camera systems. Other important reasons why the active vision approach is
used within the ActIPret system is the possibility to fix the attention to important parts of
the scene, to follow the movement of objects like the hand and to observe objects in
more detail which is quite useful for small objects like the buttons of the CD-Player in the
ActIPret scenario. All these advantages are helpful for tracking services (Hand Tracker,
Ellipse Tracker) and services like object recognition. Since the active components within
the ActIPret-Framework [6] are not statically predefined, but dynamically requested from
higher-level components or behaviours, with own cognitive capabilities, realization of
these advantages requires to deal with more complex control mechanisms for resource
management.

2.2 Active Vision in ActIPret
The ActIPret demonstrator consists of two heterogeneous AMTEC robotic systems [4].
Robot system 1 is a 4 degree of freedom stereo camera head visualized in Figure 1,
system 2 a 6-DOF robot illustrated in Figure 2. On each robot a stereo camera pair is
mounted, using Sony FireWire cameras (DFW-VL500) 5.5 – 64 mm. The robots are
controlled by a PC based industrial controller enhanced with a CORBA-based interface,
which provides a simple and efficient command set to command the robot directly out of
the ActIPret Framework.

1 As view we define the assignment of the camera and the control over its orientation that the
camera has a requested 3D point in the image centre.

 - 4 -

3 Concept
This section presents the concept of the control mechanism for investigative behaviours
/ services. Section 3.1 mainly deals with the concept of shared responsibility.

The concept to control of the behaviours and the resources follows the following
objectives:

• Enhancing vision components towards active behaviours

o The character of the behaviour (investigative, attentive) is defined by the
vision components alone, independent from the behaviour-control process
and the standardized communication patterns in the framework.

o Support to maximize the efficiency of the cognitive vision system.

o Support to exploit the cognitive capability of single components and the
overall system by distributed control aspects.

• Simplicity, extendibility, adaptability

o Creation of a behaviour / vision component that requests resources shall be
as simple as possible to be programmed.

o Components will require only restricted “local” knowledge for goal-directed
interaction within the ActIPret system and to perform useful behaviours. No
single component needs knowledge about large parts of the system. Every
component acts only on knowledge that is intuitively liked to its task: E.g. a
Vision component has no own knowledge about the overall system, or the
robots.

Figure 1: Stereo camera head Figure 2: 6-DOF robot system

 - 5 -

o “Intelligent” behaviour of the overall active system will arise from interaction of
these components.

• HW independence and exchangeability. Exchange of HW / SW shall only need
adaptations of the directly connected component, with no further consequences for
the whole system.

3.1 Shared responsibility
The idea behind the control mechanism is based on a de-central approach in which each
involved service has limited specific responsibility, that matches the “local” knowledge
inherent to its task.

For the case of processing visual behaviours or services, which have to deal with the
resource “view”, the robots which directs the cameras must be controlled in such a way
that the overall system satisfies potentially multiple dynamically varying constraints
simultaneously best possible. In the presented distributed approach, each involved
component has a limited specific responsibility for controlling the overall cognitive active
system (shared responsibility). By interaction of the components, the final control of the
robot attention considers:

• Dynamic and reactive service selection by the requesting component. The selection
process matches the service description of the providing components, against task
and situation specific requirements of the requesting component and the system.
This functionality is needed to handle the dynamics of the scene and involved
objects.

• A local highly reactive and rapid response to changes in the scene and requirements
of the vision components. Rapid response is achieved by the direct communication
between the view requesting component and the view controller as well as the
autonomy / responsibility of the view controller for its local operations.

• Strategy to increase cost and quality of the services towards (local sub-)
optima. Self-evaluated cost and quality features of components are used for local
control-decisions that target minimizing cost and maximizing quality of the executed
services according to their priority – if given. Cost and quality of services over time is
used for rapid local conflict management (potentially up to stopping services which
impair other services) and fusion of view requests.

• Scalability for the heterogeneous robot system and independence of hardware and
software is crucial.

• Allow hand-over of services from one component assigned to one robot to another
component activated on a second robot.

Distribution of decentral knowledge and responsibilities:

• Vision / Interpretation components:

o Know: what output they can provide under what view conditions and
what input they need. What is their point of interest.

 - 6 -

o Know not: What / how many robots and cameras exist and what their
status is.

o Decide: Select lower level service and (if active) request views to a given
point of interest.

o Decide not: Which robot they are assigned to, which other components
are running on the robot, where the robot must point to.

• Robot Control components:

o Know: own motion capabilities and dangerous zones, own status and
pose, services to serve and the quality to fulfil requests of individual
components, quality and cost for serving a new vision component to be
started and different options and combinations.

o Know not: Other robots in the system, tasks of vision components.

o Decide: Where to look to satisfy the view request of assigned services
simultaneously best possible. Pre-select possible combination of
components if a new component shall be started and consequences on
cost and quality. “Freeze in” view request of a conflicting component and
propose its termination.

o Decide not: Which component to be started, which vision component to
be selected.

• View Contract Manager:

o Knows: Overview on status of components running on individual robots
(including quality and costs features).

o Knows not: Kinematics, pose or specific features of robots. Actual
position of the robots. High-dynamic smaller changes of cost and quality
of the components assigned to a robot. Task or properties of vision
components.

o Decides: To which robot to assign a requested component, and
potentially in which redundancy (!) and potentially which other service to
be terminated. Hand-over procedure of components from one robot to
another.

o Decides not: which vision component-class is selected by the requesting
component.

3.2 Behaviour control mechanism

Initial service selection and assignment
If a requesting component needs a specific service to fulfil its task it uses the
functionality of the service list, which is part of the ActIPret framework, to get a pre-
selection of all services which are potentially useful, according to its requested service
properties. The properties of a service to be requested and the initiation of the pre-
selection according to these individual service properties are statically or reactive
defined inside the component program. The component then selects the best fitting
service(s) among the ones pre-selected by the service list.

 - 7 -

If the service description of the pre-selected services indicates that the resource “active
camera” is a pre-requisite for execution the system automatically delegates the final
decision, which service (among the pre-selected ones) to be started on which robot /
camera system, to the view contract manager. In this case the view contract manager
component is responsible to provide an optimal selection of the view controller for one of
the pre-selected services. The view contract manager will propose redundant robot –
service assignment if this is supported by the requesting component and possible in the
current load-situation. The communication sequence of the initial service selection is
illustrated in Figure 3.

To improve the selection of the best robot / camera system it is possible to specify a SOI
(space of interest), which is used as an initial view request for the selected view
controller. With this functionality the camera system focused to a task- and situation
specific-view point. This is crucial for single-frame services like the object recognition
service, where this functionality is used to direct the camera system to view points which
are considered to be of importance by the requesting module, e.g. where hand-activities
has been detected.

Camera

IS
(Image Server)

GR
(Gesture Recognition)

View
Contract
Manager

View
Controller

1

View
Controller

2
View independent

View dependent

(2) response
possible Services

Service List

ARE: (PC1)
QoS, Costs, Desc.
GR: (PC1)
QoS, Costs, Desc.
HT:(PC2)
QoS, Costs, Desc.
HT:(PC1)
QoS, Costs, Desc.
.
.

(1) request
Service List

(3) request
Service - VC
combination

View
Controller

n

da
ta

 a
bs

tra
ct

io
n

HT
(Hand Tracker)

Figure 3: Initial service selection

 - 8 -

Interface of the VCM request

virtual void AssignViewController(
 std::string& rHostName, // hostname of requester component
 // (task management in VCM)
 SOIType & rSOI, // to control initial view point
 vector<ServiceOffer*> &rProviderOffers,
 // vector with Service Offers of Provider
 ServicePropertyType & rRequesterProperty);
 // QoS, priority of service requester

View controller selection
To get the necessary information for deciding which choice satisfies global (sub-)
optimal criterion, i.e. which view controller should be assigned for the requested service,
the view contract manager requests bids from the individual view controllers. The bid of
each view-controller includes one to several options at which local costs and quality the
service can be processed and which local resource conflicts with the currently processed
services will arise.

The idea behind the concept of sending several options per bid – selected best by the
VC - especially allows near-optimal conflict resolution. While the VC has no information
to judge which local conflict causes largest overall impairment of the system
performance, different options allow to propose e.g. combinations in which the new
service is running in parallel to the older ones assigned to the resource robot – which
usually leads to lower quality since the merged view request of several services are a
compromise – or to terminate one or more services allowing to provide a view more
tuned to the need of the newly start component. The later option will consequently
features a predicted better quality and higher cost (need to terminate other components,
typically larger motion of the arm from focussing view point of the old components to the
one of the component to be newly assigned. Alternatively a bid can include the rejection
of starting the component. While there is no promising solution how a local view
controller with not knowledge about the total situation and system configuration can
decide which are the system wide consequences, the view contract manager can select
a global suboptimal solution (selection of a optimal solution would need that all bids
include all possible options instead of the ones which are selected by the VC as locally
optimal).

For services, which require a specific, situation dependent view point at start-up, the
initial specified SOI is considered in the calculation of the costs and quality for the
specific view controller.

Examples for costs are:

• Movement necessary to achieve the view point specified by the initial specified
SOI.

• Number of already started services on the view controller.

• Conflicts with already started services.

Examples for quality are:

 - 9 -

• Distance between the view point specified by the SOI and view point which can
be provided.

• Spatial distance between the camera poses that satisfies the focussing on the
view points.

The selected services are then started on the assigned robot by the service-requesting
component.

The communication sequence of the view controller selection is illustrated in Figure 4.

Interface of the VCM response

virtual void AssignViewController_Response(
 int & rKeyValue, // Internal parameter to access to
 // selected VC
 int & rSelectedServiceId, // Index, specifies service offer
 std::string & rConstraintString); // constraint string for selected
 // ViewController

Run-time control

Camera

IS
(Image Server)

GR
(Gesture Recognition)

View
Contract
Manager

View
Controller

1

View
Controller

2
View independent

View dependent

(5) response
VC bid

Service List

ARE: (PC1)
QoS, Costs, Desc.
GR: (PC1)
QoS, Costs, Desc.
HT:(PC2)
QoS, Costs, Desc.
HT:(PC1)
QoS, Costs, Desc.
.
.

(6) response
Service - VC
combination

(4) request
VC bid

View
Controller

n

da
ta

 a
bs

tra
ct

io
n

HT
(Hand Tracker)

Figure 4: View controller selection

 - 10 -

Each providing component offers its services to the requesting components. In the
special case where the providing component needs a specific view to provide the best
possible result the providing component itself is responsible to send the view requests to
the view controller. To obtain the information which robot system / view controller should
be used for the view requests the system sends automatically additional information via
the service request to the providing component. This additional information is used as a
constraint string in the service request for the view controllers to get the instance of the
view controller assigned by the view contract manager.

The view request is – independent of the robot on which it is performed – specified as
space of interest in 3D world coordinates. The requested space of interest specifies the
view point and the optimal orientation from which to observe the object, plus the allowed
parameter tolerances. The view controller checks the feasibility of the requests of the
given robot, i.e. if it can be reached considering the robot’s dexterous workspace. The
view controller component also checks for inconsistencies with view requests from other
services, which are active on this specific robot. According to these conditions the view
controller recalculates local cost and quality for each service combination. In case of
larger changes, it sends an update to the view contract manager, which can re-assign
the service or initiate stopping services. In case of a conflict, the view controller can
react rapidly by suppressing the requests of one service and by initiating the termination
of the service (). For all non-conflicting, active services of the robot, the view controller
merges the requests and calculates a new reachable view trajectory and commands the
robot.

The run-time control procedure is visualized in Figure 5.

Camera

IS
(Image Server)

GR
(Gesture Recognition)

View
Contract
Manager

View
Controller

1

View
Controller

2
View independent

View dependent

Service List

ARE: (PC1)
QoS, Costs, Desc.
GR: (PC1)
QoS, Costs, Desc.
HT:(PC2)
QoS, Costs, Desc.
HT:(PC1)
QoS, Costs, Desc.
.
.

View
Controller

n
da

ta
 a

bs
tra

ct
io

n

HT
(Hand Tracker)

(7) request
track hand

(10a) response
track hand

(10b) request
view point

(11) response
Quality & Cost:

view point

(8) request
image server

(9) response
image server

Figure 5: Run-time control

 - 11 -

Interface of the view request

virtual void RequestView(
 int & rKeyValue, // unique ID number of view request
 SOISeqType & rSOIVec); // SOI where component want to watch

virtual void RequestView_Response(
 double & rCost, // Calculated cost for the provided view point
 double & rQoV); // Calculated quality of provided view point

The actual vision-based behaviour arises from the interaction of the view requesting
component, the view controller, the component that requested the vision component,
from the view contract manager component and the interactions which are not-statically
defined. The character of such a behaviour is clearly specified by the (investigative,
attentive) character of the component that is connected to the view controller. The
performance of the behaviour varies over time and is influenced by the sum of
components which are assigned to the view controller and send view requests to it.

4 Implementing behaviour based control aspects in
distributed components according to the concept

The coordination procedure described in chapter 3 with all its elaborated and complex
control mechanisms is independent from the components and their character. Therefore
it is hidden from the programmer of the components, releasing him from the difficult
tasks and additional constraints. Chapter 4 presents the usage of the view contract
manager and view controller from the component programmer point of view for
“realizing” a desired robotic behaviour.

4.1 Overview
The role of the view controller (VC) is to allow a service which needs a specific view to
process its task to achieve this view. The role of the view contract manager (VCM) is to
choose the best fitting view controller for a view dependent service.

The first step needed is to request the best fitting services from the view contract
manager. The view contract manager generates a constraint string and a key value for
the service and sends this information in the response message.

The view dependent service is using this information (constraint string and key value) to
establish the communication to the view controller. The simple communication sequence
is visualised in Figure 6.

 - 12 -

All these functionalities and interfaces needed are hidden form the programmer by using
a special inheritance structure visualised in Error! Reference source not found.:

Figure 6: Communication sequence VCM – VC

+ProcessMessage()

ServiceProvider

+GetConstraintString()
+GetKeyValue()
+HaveConstraintString()
+ProcessMessage()
-GetVCInfo()
#SetConstraintSttring()
#SetKeyValue()
#SetMssage()
-DecodeVCInfo()
-ReceiveVCInfo()
-ProcessVCMResponseMessage()

-mState
-mConstraintString
-mKeyValue

ViewProvidableServiceProvider

+UserProcessMessage()

CUserProvidingServiceProvider

+UserProcessMessage()

UserProvidingServiceProvider

-ProcessAskForService
-ChooseOffer

ServiceRequester

+UserProcessMessage()

UserProvidingServiceRequester

+SetViewPoint()
+SetSOI()
+SetServiceProperty()
+HaveConstraintString()
+SetComponent()
+GetPriority()
+SetPriority()
+HaveCancelServiceRecommendation()
#SendMessage()
-HandleOfferAfteOpened()
-HandleOfferBeforeOpened()
-AssignViewController()
-SendVCInfo()
-InitializeViewContractManageService()
-AssignViewController_Response()
-CancelServiceRecommendation()
-AddVCInfoToMessage()
-ChooseOfferImp()

#mpComponent
-mConstraintString
-mKeyValue
-mCameraViewPoint
-mServiceProperty
-mOffer
-mAddress
-mMessageVec
-mIsFirstCall
-mHaveConstraintString
-mpViewConstactManageReq

ViewProvidableServiceRequester

+UserProcessMessage()

CUserProvidingServiceRequester

#EstablishCommunication()
-ProcessAskForServiceResponse()
-HandleOfferBeforeOpened()
-HandleOfferAfterOpened()
-ChooseOffer()
-ChooseOfferImp()

MessageProcessableServiceRequester

Figure 7: Class diagram of service inheritance

 - 13 -

Example source code for the TrackObject service: communication between
Gesture Recogniser and Hand Tracker:

#include “ViewProvidableServiceProvider.h”
// ServiceProvider
class TrackObject_Provider : public ViewProvidableServiceProvider
{
…
};

#include “ViewProvidableServiceRequester.h”
// ServiceRequester
class TrackObject_Requester : public ViewProvidableServiceRequester
{
…
};

4.2 Setting up the connection to the View Contract Manager
In order to get access to the View Contract Manager the ServiceRequester class has
to derive the ViewProvidableServiceRequester class. The initialization of the
requester instance is the same as for the normal service request. To initialize the View
Contract Manager communication the component programmer has to call the
SetComponent() function. If SOI (space of interest) is available it is necessary to use
the SetSOI() function to initialize the View Controller with this position. The response
of the View Contract Manager request is hidden from the component programmer and
the returned information (constraint string and the KeyValue) is transferred automatically
to the service provider.

Example source code for the Gesture Recogniser:

// Initialization of service requester instance
HandInfo_TrackObject_Requester *tracker =
 new HandInfo_TrackObject_Requester(this);

// Initialization of ViewContractManager communication
tracker->SetComponent(GetComponent());

// If SOI is known, this information is used to initialize
// ViewController position
//tracker->SetSOI(SOI);

// same way as normal service registration
AddRequester(tracker, "SupportedDataModel == 'colour'");

 - 14 -

4.3 Setting up the connection to the View Controller
In order to get access to the View Controller the ServiceProvider class has to derive
the ViewProvidableServiceProvider class. Like in the normal service setup the
component programmer has to create an instance of the requester interface. In addition
to this the programmer has to use the constraint string and the KeyValue sent by the
service requester.

Example source code for the Hand Tracker:

// Get additional information to identify the View Controller
SetMessage(pMsg);
std::string constraintString = GetConstraintString();
int keyValue = GetKeyValue();

// initialization of requester instance
mpViewController = new CViewControl_Requester() ;

// service registration
pComponent->AddRequester(mpViewController, constraintString);

// Use additional information to identify ViewContoller
mpViewController->SetKeyValue(keyValue);

4.4 Sending the View Request
Now the view dependent service can send its view requests by calling the
RequestView() function.

Example source code for the Hand Tracker:

// view request data type
AIP::SOIType viewpoint;

// specification of view point
viewPoint.Origin.Position = ObjHypList[p].Pose.Pose.Position;

// request of view point
mpViewController->RequestView(viewPoint);

 - 15 -

4.5 View dependent components in ActIPret
Within the ActIPret system several different components are employed to interpret the
activities of human experts. Some of them are responsible to observe / interpret scenes
and to calculate the pose of objects or operators in 3D world coordinates. To solve this
task they need a specific view, which is best fitting for the object they have to process.
All these components are therefore potential candidates to send a view request to the
view controller. In ActIPret these components are:

Table 1: List of components using View Controller

Component Name Provided services

Hand Detector & Tracker (HT) HandPose, TrackHand

Object Detector & Tracker (ODT) TrackObject

Object Recogniser (OR) RecogniseObject

Before the communication to one of these components is established the View Contract
Manager has to allocate the best fitting Service – View Controller combination. Therefore
there are some components in the ActIPret system, which are responsible to request this
combination for the View Contract Manager. In ActIPret these components are:

Table 2: List of components using View Contract Manager

Component Name Requested services

Gesture Recogniser TrackHand

Object Relation Generator HandPose, TrackObject, RecogniseObject

A graph with all the components of the ActIPret system and the description of there
communication links is presented in Figure 8. The components which are responsible to
get the best fitting Service – View Controller combination are marked with a green
square. The components using the View Controller to direct the robot / camera system to
the best view point are marked with a blue square.

 - 16 -

#######

5 Experimental evaluation
Figure 9 shows the set-up in the laboratory at PROFACTOR. The stereo head in the top
left is used subsequently to demonstrate active tracking of the operator hand. The stereo
system shown in the top right is mounted on a robot arm.

Post-Attention

Object
Recogniser

Hand
Recogniser

Pre-Attention

Object
Detector &

Tracker

Hand
Detector &

Tracker

Legend

Camera

Pre-Reasoning

Synthesis

Hand
Detector &

Tracker

2D Object
Tracker

2D Object
Tracker

Object
Detector &

Tracker

Image Server

Object
Relation

Generator

Reasoning
Engine

USER
(HMI)

Activity Plan
Generator

Object
Recogniser

Image ServerCPU
Controller

Gesture
Recogniser

Motion
Detector

da
ta

 a
bs

tra
ct

io
n

Service List

Detect Motion:
QoS, Costs, Desc. (PC1)
Track Object in 2D:
QoS, Costs, Desc. (PC1)
Track Object in 2D:
QoS, Costs, Desc. (PC1)
.
.
.

Hand
Recogniser

Task based control
(Service request)

Image data driven
(Service response)

communication link

Component
Namereal component

Process Nameabstract process

Service List

Recognise Object: QoS, Costs, Desc. (PC2)
Track Hand: QoS, Costs, Desc. (PC1)
Track Hand: QoS, Costs, Desc. (PC2)

View
Controller

1

View
Controller

n

View
Controller

2

View independent

View dependent

needs VCM

Pose ServerPose Server

needs VC

Figure 8: Components using VCM and VC

 - 17 -

Figure 9: The ActIPret demonstration in the laboratory at PROFACTOR. Top left is the
active fixed stereo system, on the top right the stereo system on the robot arm is seen.

The screen in the background shows the GUI of the framework while Jon is placing the CD
in the player.

Figure 10 shows an example stereo pair of images with the output of the hand tracker
component. The detected hand is shown in cyan and other hypotheses are represented
by other colours.

Left Image Right Image

Figure 10: Example stereo pair from the Hand Tracker (HT) component.

 - 18 -

Figure 11 shows a sequence of images from the stereo head during actively following
the motion of the hand. The correct hand hypothesis is represented in cyan. Although
there are other hypotheses form colour detection, tracking constraints keep following the
correct hand throughout the complete sequence. The images are shown in steps of 667
ms.

 - 19 -

Figure 11: Actively following the hand motion

 - 20 -

6 References

[1] C. Capurro, F. Panerai and G. Sandini, “Dynamic Vergence, In IROS96, pages
1241-1249

[2] J. A. Fayman, O. Sudarsky, and E. Rivlin, “Zoom Tracking”, In Proc. IEEE Int. Conf.
On Robotics and Automation (ICRA `98), pages 2783 – 2789, May 1998.

[3] T. Lindeberg, K. Brunnström and J.O. Eklundh. “Active Detection and Classifiaction
of Junctions by Foveating with a Head-Eye System Guided by Scale-Space Primal
Sketch”. In ECCV 92, page 701-709, May 1992

[4] http://www.amtec-robotics.com/

[5] M. Takagi, C. Eberst, G. Umgeher: Control of Redundant Attentive and Investigative
Behaviors in an Active Cognitive Vision System, 4th Asia-Europe Congress on
Mechatronics, Saitama, Japan, September 2003.

[6] W. Ponweiser, G. Umgeher, M. Vincze: A Reusable Dynamic Framework for
Cognitive Vision Systems, Workshop on Computer Vision System Control
Architectures (VSCA 2003), Graz, Austria, March 2003.

[7] M. Takagi, C. Eberst, G. Umgeher: Control of Redundant Attentive and Investigative
Behaviors in an Active Cognitive Vision System, Workshop on Computer Vision
System Control Architectures (VSCA 2003), Graz, Austria, March 2003.

