

 D:\actipret\deliverables\D 7.2\Deliverable72cover.doc

DELIVERABLE D7.2

VViirrttuuaall RReeaalliittyy pprreesseennttaattiioonn ddeemmoo:: HHuummaann
aaccttiivviittiieess iinn VVRR

October 16, 2003

Authors: Vladimir Stepan, Jiri Zara, Vaclav Hlavac
Czech Technical University, Faculty of Electrical Engineering
Department of Cybernetics, Center for Machine Perception

121 35 Prague 2, Karlovo námesti 13, Czech Republic
{stepanv,zara,hlavac}@fel.cvut.cz, http://cmp.felk.cvut.cz

Project acronym: ACTIPRET
Project full title: Interpreting and Understanding Activities of
 Expert Operators for Teaching and Education

Action Line IV.2.1: Real Time Distributed Systems (Cognitive Vision)
Contract Number: IST-2001-32184

CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY

R
E
S
E
A
R
C
H

R
E
P
O

R
T

IS
S
N

12
13

-2
36

5
Virtual Reality presentation demo:

Human activities in VR

Deliverable 7.2
of the project IST-2001-32184 ActIPret

Vladimı́r Štěpán, Jǐŕı Žára, Václav Hlaváč

{stepanv,zara,hlavac}@fel.cvut.cz

CTU–CMP–2003–21

October 16, 2003

Available at
ftp://cmp.felk.cvut.cz/pub/cmp/articles/stepan/Stepan-TR-2003-21.pdf

Authors were supported by the project IST-2001-32184 ActIPret,
by the project GAČR 102/03/0440, and by the Czech Ministry of
Education under the project MSM 212300013.

Research Reports of CMP, Czech Technical University in Prague, No. 21, 2003

Published by

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz

Abstract

The virtual reality tool is presented which allows to display the
activity of a human operator performing a routine which involves ma-
nipulation with object. The tool has to transform the ActIPret ac-
tivity plan into virtual reality entities in VRML. The main challenge
has been in incorporating semantic information to the activity plan,
converting it into animation, integrating time information, and de-
scribing parametrized avatar-object interaction. The use of standard
3D computer vision reconstruction tools was inquired for creating a
3D model of a real 3D scene however, the most of the models has been
hand-crafted so far.

Contents

1 Introduction and the ActIPret project context 2

2 VR presentation module 2

3 Task Specification 4

4 Related work 4
4.1 Scene reconstruction . 5
4.2 Human animation . 5
4.3 Avatar-object interaction . 5

5 Our Approach 6
5.1 3D geometry and appearance issues 6
5.2 Animation . 7
5.3 Avatar-object interaction . 8

6 Implementation Issues 8
6.1 Animation in VRML . 9
6.2 The activity in VRML . 10
6.3 Interaction events . 11
6.4 Experimental application . 13

7 Conclusions and future work 14

1

1 Introduction and the ActIPret project con-

text

This report points out several problems and solutions encountered in the
process of development of the ActIPret virtual reality (VR) software module
for presentation of a learned expert activity which is described symbolically
by the activity plan. A demo implementation of this software module is
described as well.

Learning and perception is tested in ActIPret scenarios which encapsu-
late the activity. The ‘insert CD scenario’ is the simplest one used in the
project. For the completeness, let us note that this scenario includes a hu-
man operator, the table with a CD player and CDs. The human opens the
player by pushing the appropriate button, selects the CD on the table top,
picks the CD up, inserts it into the player and closes the player. Even though
this might look as a little too simple problem, from the VR point of view the
scenario comprises all what a testing example should have. The animated
avatar interacts with other objects in a scene - the CD is moved between two
locations and CD player is opened (and closed) as a result of avatar’s action.
All experiments described later have been performed with CD scenario as a
testing example.

To stress the position of the VR presentation module in the ActIPret
framework, let us show the framework’s block diagram (see Fig. 1).

Structure of the report

The report is structured as follows: Section 2 informally introduces the VR
presentation module. Three relatively independent submodules are identified
(3D scene reconstruction, animation of a human, and interaction between
avatar and objects). The task specification is given in Section 3, which
focuses in closer detail to the particular goals, which have been reached at
present stage of the project. Section 4 summarizes the state-of-the-art in
three mentioned areas. The solution we propose to the specified task is
described in Section 5. Implementation issues are in Section 6 in which
we mainly focus on the VRML prototypes and functions involved. Final
Section 7 concludes the report and outlines intended future work.

2 VR presentation module

The VR module is not directly coupled to other modules of the ActIPret
framework, see Fig. 1. The VR module can be considered a stand-alone

2

PC n Camera n

Attention

Object
Recogniser

Pre-Attention

Object
Detector &

Tracker

Hand Detector
& Tracker

Legend

Camera 1

Pre-Reasoning

Synthesis

Hand Detector
& Tracker

Object
Detector &

Tracker

Pose Server

Object
Relation

Generator

Activity
Reasoning

Engine

USER
(HMI)

Activity Plan
Generator

Object
Recogniser

Pose Server
CPU

Controller

Gesture
Recogniser

Ellipse
Detector

da
ta

 a
bs

tr
ac

tio
n

Service List

Detect Motion:
QoS, Costs, Desc. (PC1)
Track Object in 2D:
QoS, Costs, Desc. (PC1)
Track Object in 2D:
QoS, Costs, Desc. (PCn)

.

.

Task based control
(Service request)

Image data driven
(Service response)

communication link

Component
Namereal component

Process Nameabstract process

Service List with ViewController

Recognise Object: QoS, Costs, Desc. (PC2)
Track Hand: QoS, Costs, Desc. (PC1)
Track Hand: QoS, Costs, Desc. (PC2)

View
Controller

1

View
Controller

n

View
Controller

2

View independent

View dependent

���

�

�� ����

can request a view

Image ServerImage Server

PC 1

CPU
Controller

Motion
Detector

Model

Model Server

Virtual Reality
(offline)

Figure 1: ActIPret framework and its modules.

program for presentation the project results and generally for human-oriented
activities. It was decided to build the VR module on VRML standard.

The presentation of the human activity in VR can be divided into three
parts: 3D geometry, animation and interactions.

The 3D model of the scene can be captured off-line using 3D reconstruc-
tion techniques from computer vision. The model includes 3D geometry and
appearance of the scene itself and involved objects. In the ‘insert CD sce-
nario’, the model consists of CDs, CD player, the table and the walls of the
room in the scenario. The avatar is one of the objects in the scene in terms
of geometry.

All the motion in the scene can be included in the animation part. In
the ‘insert CD scenario’, the operator reaches the button, pushes it, picks up
the CD, the CD player opens and the human moves the CD into the player.
Not all the motion is of the same kind. The motions can be categorized by
their importance, basically into two categories – indigenous and dependent
(master-slave). The motion of the human is indigenous and all other motion
related to the activity depends on human motion, as it is triggered by it.
Thus it is necessary to model only the human motion.

Pushing the button followed by CD player opening, picking up and later

3

releasing the CD are interactions between a human and the objects in the
scene. These interactions belong to the third and the most difficult part of
the activity description.

3 Task Specification

The task of the ActIPret VR presentation module is to define, create and
present the three parts of the human activity VR model. We use the output
of other ActIPret modules in a form of a conceptual language and an activity
plan. Since this description is not exactly what we need for a VR model of
the activity, we have to transform it to a description usable for the selected
tools (the VRML standard).

Even though the activity plan provides the information on the interaction
between the objects, it does not describe the motion of the human on the
level we need it for VR presentation. Thus the VR presentation module
must use the output of the hand tracker to obtain the information describing
the human motion that can be converted to our chosen (VRML) animation
format.

A large variety of human activities requires general tools for their descrip-
tion. Simultaneously these tools must be able to generate the animation data
and interaction description for particular activities. For the experimental rea-
sons we first created the hard-coded ‘insert CD scenario’ presentation as an
example of a human expert activity model. We proceed in task of selecting
the set of data describing the activity by abstracting the ‘insert CD scenario’
VR model.

After selecting this set of data we need to create a formal notation of an
activity prototype in VRML. Completing this task will also serve to clear
out the goals and next steps for our part of the ActIPret project.

Due to the unintegrated off-line position of the ActIPret VR presentation
module does not need to model the activity in real time. The VR description
is created once and then can be reviewed according to user’s needs.

4 Related work

The task of the activity modelling consists of several separate subtasks - the
3D scene reconstruction, human animation and avatar-object interaction.
All these topics have been extensively studied in different research areas -
computer vision and computer graphics.

4

4.1 Scene reconstruction

Computer vision provides several techniques for 3D scene reconstruction [6].
These can basically be classified as active and passive. Among the active
methods we can count time-of-flight range finders (LIDAR), structured light
range finders the laser scanning and other such methods, typically quite de-
manding in terms of special hardware. Passive methods are based on recon-
struction from two or more views provided that the correspondence problem
is solved. The 3D geometry can be reconstructed from images captured by
calibrated or uncalibrated camera [7].

There is also a tedious manual way to reconstruct the scene is the manual
modelling using some 3D modelling software, e.g. 3D Studio Max.

The result of the scene reconstruction is the information about the 3D
geometry of scenes and involved objects and their appearance (texture). For
the needs of the activity modelling, the model should usually have certain
structure and even semantics (the CD player opens and closes upon an event
of pushing the button). Thus the scene reconstruction for needs of an activity
modelling still needs large amount of user input.

The smart object [3, 4] approach that resembles the object oriented pro-
gramming paradigm provides the most complex description of objects for
the activity simulations. As far as the simple geometry is concerned, there
is nothing special about smart objects.

4.2 Human animation

Many techniques of animating the virtual humanoid have been described.
The forward and inverse kinematics techniques have been widely used. Also
the approach of capturing the real actors motion has developed in a vari-
ety of technologies that can be basically divided into on-line and off-line
methods. Especially the latter, represented by the optical technology is de-
veloping rapidly [1, 2]. Lately some rather interesting methods of animating
the virtual humanoid have appeared, such as the virtual puppetry [5].

Usually a combination of the animation methods is used. For example,
the limited information obtained by optical tracking part of human body can
be used to animate the virtual humanoid when the constrains given by the
human model (distances between joints, etc) are used.

4.3 Avatar-object interaction

Avatar-object interactions are commonly solved by programming them specif-
ically for each case. This does not solve the problem for the wide range of

5

cases. There are attempts to solve involved manipulation problems automat-
ically. Due to computational complexity, heuristics borrowed from artificial
intelligence are often used. Advanced techniques as time dependent plan-
ning, reasoning and learning determine many manipulation variables during
an avatar-object interaction. Seeing from this point of view, even the sim-
plest activities in ‘insert CD scenario’ (opening the door, picking up the
CD) are quite complex in terms of the interactions between human and the
environment. This issue is quite a challenge.

The idea of the smart object [3, 4] was introduced to address this problem
from opposite direction. The information about the way how objects can be
used is incorporated in the objects in the scene. This information concerns
the actions of the object as well as the expected behavior of the avatar (or,
in case of cited research, of an autonomous agent). This approach is suitable
for autonomous agents or for highly interactive systems. The smart object
technique seems to be too sophisticated for our purposes.

5 Our Approach

We introduced the VR description of the human expert activity which con-
sists of a set of actions leading to a certain goal. The actions of an expert
are represented by the animation (the motion data) and by the avatar-object
interactions. Our activity description is the VR form of the scenario with
the specification of the scene settings and a description of the particular act.

The VR activity description includes the information on the geometry of
the scene, its appearance, the duration of the activity, the animation data
describing the motion of the avatar, and description of the avatar-object
interactions.

The activity description is further enhanced with optional textual descrip-
tion, that can be displayed to the user when viewing the recorded activity.
These hints are synchronized by the avatar-object interaction events.

5.1 3D geometry and appearance issues

Let us first show one frame from the input video sequence showing the scene
of the simplest ‘insert CD scenario’, see Fig. 2.

As there is no general method to automatically reconstruct the scene (and
no ambition to develop one in the project), we have decided to model each
object in a scene either manually or with the help of some software for image
based modelling. We chose to use commercial tool for 3D reconstruction

6

Figure 2: The example of a frame from the input video sequence of the ‘insert
CD scenario’.

from images Canoma [10]. The point correspondences should be clicked by
hand and polygons representing texture as well.

A set of 3D models for each scenario analyzed with the ActIPret system
has to be created. This process will always require a significant amount of
user input. Some models will have to implement their own functionality.
The CD player can be an example of it, as it opens and closes at the event
of pushing the appropriate button. Here the geometrical model has to be
combined with interactions and animations.

Although the functionality will be added to some models, this is not the
smart object approach, because the object will not contain the information
for the avatar. It is just the enhancement of the simple geometrical model.

The idea of further enhancing the models to become smart objects has
not been completely aborted. It can prove useful for the process of creating
particular models of activity.

In the activity description, all the objects in the scene are listed along
with their locations and orientations in the scene and other attributes of the
models.

5.2 Animation

All the dynamics in the scene related to the human activity depends on the
actions of the human. The only animation data necessary to store for the
activity is the data describing the motion of the avatar.

In the simplest ‘insert CD scenario’, the pose of the expert performing
the activity is assumed to be known and unchanged during the motion. Only

7

the active hand (the ‘insert CD scenario’ is ‘one-handed’) is being tracked.
Thanks to these constraints, it is not a problem to animate the avatar us-
ing the inverse kinematics algorithms provided the trajectory of the hand is
known.

The inverse kinematics algorithm that seems to be most promising for our
purposes is Cyclic Coordinate Descent (CCD). This algorithm was chosen for
implementation.

However, the knowledge of the hand trajectory is not enough to animate
the hand with all details. The information about the finger movements and
position is not available.

This problem can be solved by the use of a database of gestures associated
with certain actions (pushing the button), that will be indicated by the
activity plan. Another solution might be the use of the smart object approach
with the information on the positions of avatar’s fingers incorporated into the
manipulated object model.

5.3 Avatar-object interaction

The human changes the state of the scene by changing the state of particular
objects (opening the CD player) or by moving objects without changing their
state (picking up the CD). In case of describing the activity, we are interested
in purposeful avatar-object interactions. That excludes motions of objects
after the on-off stimuli.

The actual events of interaction that remain are activating the functions
of objects and moving objects. The list of the events belongs to the activity
description mentioned in the beginning of this section. This list is ordered
by the relative time of the event occurrence which is also stored in order to
synchronize the events with the animation.

6 Implementation Issues

The demo implementation of the VR presentation module has been written
in Java language and uses the EAI (External Authoring Interface) to control
the VR scene that is defined using the VRML standard. Beacuse of the
EAI implementation, that has been used, the Parallel Graphics [12] Cortona
VRML browser is necessary for running the demo. The humanoid avatar
we use is compliant to the H-Anim 1.1 standard and was borrowed from the
VRLab web site [13], where it is available for non-commercial use (by C.
Babski [9]).

8

The program (see 6.4) works with the VRML description of the activity
(see 6.2) that encapsulates the VRML animation (see 6.1) and the model of
the scene.

6.1 Animation in VRML

We have designed an animation format that can be easily connected to any H-
Anim humanoid [11]. The following VRML PROTO provides the information
that describes the animation and its connection to the H-Anim humanoid.
One of the possible uses of this prototype is in the description of the activity
presented in the next section.

PROTO Animation
[

exposedField MFString jointToIntMap []
exposedField SFString name ""
exposedField SFNode timer NULL
exposedField MFNode interpolators []

]

Every animation is identified by its name.

The timer field contains the timer (TimeSensor) node of the animation
and the interpolators field the list of interpolators. Last two of the interpo-
lators belong to the hanim HumanoidRoot joint node of the humanoid. The
first of them is the PositionInterpolator and the second one is the Orienta-
tionInterpolator.

The jointToIntMap field serves the purpose of determining which joint
belongs to which interpolator. When loading the animation, the application
should connect the corresponding joint (from the list of joints) to appropri-
ate interpolator (list of interpolators = the children field of the animation)
for each of these strings different from ‘INACTIVE’. It is clear, that the se-
quence of joints is crucial. The joints in an appropriate field of the H-Anim
Humanoid node are sorted by depth-first traversing the humanoid hierarchy
and the list of interpolators has to follow this order.

This idea was borrowed and simplified from the animation gallery de-
scribed on the VRLab web pages [9].

Let us demonstrate the nature of the VR presentation on the example
from the ‘insert CD scenario’ in Fig. 3. The example demonstrates how the
real example given in Fig. 2 by a frame from the input videosequence was
simplified by its generalization in a functional sense.

9

Figure 3: The VR presentation of the ’insert CD scenario’.

6.2 The activity in VRML

We have defined the VRML PROTO that combines all the information neces-
sary to describe human expert activity in order to create its model in virtual
reality.

PROTO Activity
[

exposedField SFString name ""
exposedField MFNode scene []
exposedField MFString sceneUrl []
exposedField MFVec3f scenePositions []
exposedField MFRotation sceneRotations []
exposedField MFVec3f sceneScales []
exposedField MFString sceneParameters []
exposedField SFNode animation NULL
exposedField MFFloat eventKeys []
exposedField MFNode events []
exposedField MFString textOverlay []
exposedField MFNode viewpoints []
exposedField MFNode children []
eventIn MFNode addChildren
eventIn MFNode removeChildren

]

This prototype encapsulates all the data necessary to create the model
of the scene and view the activity within the given scenario. Its instance
identifies itself to the application with (preferably unique) name.

10

The scene and sceneUrl fields are alternative ways to provide the scene
description. In the first case, the VRML code of all the objects is present in
the activity description file. Since it is better to model the scene objects as
reusable prototypes stored separately, we should rather load them from their
location. This is what sceneUrl is for.

The scenePositions, sceneRotations, sceneScales and sceneParameters
fields provide additional information about the objects and should be of
the same length as the fields describing the scene objects. These fields are
used for proper positioning of reusable prototypes included into a scene via
sceneUrl field.

The sceneParameters field yields information on possible parameters of
objects. For instance, the prototype of the CD uses the Switch node to
determine whether the color or texture will be used, other parameters are
then color or texture URL. For such model the entry in this field can look
like this:

which SFInt32 1 url MFString ../textures/cd4-1.gif

In general, it can be either empty string or the string:

(<target field><VRML type><value of that type>)*

The VRML data type must be present so the application can create the
proper VRML event to send the the data to.

The animation field contains the node with the animation data. It is an
instance of the prototype described in previous section. This animation data
describes the avatars move throughout the described activity as a whole.

The last three fields – eventKeys, events and textOverlay – refer to the
avatar-scene interaction events. The field eventKeys lists the key-frames
indicating the relative time when the event occurs. The field events is an
array of the special nodes describing the events themselves. We mention it
later in more detail (see Section 6.3). These two fields have to be of the
equal length. The last field (textOverlay) is the array of strings that could
be displayed to the user as an explanation. The number of these strings is
equal to the number of events plus 1. This field is optional.

6.3 Interaction events

The avatar-object interaction event is represented by the following VRML
PROTO.

11

PROTO ActorEvent
[

exposedField SFString eventValue ""
exposedField SFString targetNode ""
exposedField SFString eventType ""
exposedField SFString eventName ""
exposedField SFNode nextEvent NULL

]

In terms of VRML, any avatar-object interaction must be expressed as an
VRML event sent to the appropriate node. In the simplest ActIPret ‘insert
CD scenario’, there is the event of touching the button with the response of
opening (closing) the CD rack and the event of moving object (the CD).

This ActorEvent prototype has been designed to provide the information
the application needs to create the necessary VRML events.

For our needs, the VRML event is determined by the its type (event-
Type) and value (eventValue), the target node (targetNode) and its field
(eventName). All these fields of the ActorEvent prototype are strings. The
mechanism of creating appropriate VRML events from these strings must be
on the application side.

Moving objects by avatar in VRML scene is best implemented by changing
the location of the object in the graph of the scene. For example, when the
CD is picked up, it is removed from its original location and becomes a
subgraph of the animated avatar’s hand, thus accepting all transforms of the
hand.

The avatar-object interaction event of picking up the CD consists of two
VRML events - removing the object and adding it somewhere else. The
nextEvent field was added to the ActorEvent prototype for such multiple
events.

The ActorEvent for picking up the CD would be as follows:

ActorEvent {
targetNode "root"
eventType "MFNode"
eventName "removeChildren"
eventValue "node 4"
nextEvent ActorEvent {

targetNode "human sites 0"
eventType "MFNode"
eventName "addChildren"
eventValue "node 4"

}
}

12

A simple language was defined to describe the several possibilities of tar-
get VRML node. The possible targets are root of the scene, Site node [11] of
the avatar or any scene object identified by its index in the array of objects
(scene or sceneUrl fields).

In our example, the fifth object (index 4) in the scene description (sceneUrl),
which is our CD is removed from the root of the scene where it was originally
placed and added to the first (index 0) of the Site nodes listed in the H-Anim
[11] humanoid definition, which happens to be located in avatars right hand.

6.4 Experimental application

Our demo application implements the basic functions for viewing any record
of time dependent action - start, stop, pause and restart. The specifics
of implementation of these functions for the VRML based animations were
described in our paper published in 2002 [8].

The mechanism of viewing the animation was improved a little to suit
better more articulated humanoid models and the need to resolve the avatar-
object interaction events. One more link was added to time-fraction passing
chain, see Fig 6.4.

Timer Script Interpolator

Start&Stop
signals

Pause time-fraction
value

<0; 1> <pause; 1>

Figure 4: The time-fraction passing chain for animation control.

Whenever the timer that controls the animation is turned on it starts
sending the time-fractions beginning with 0. This causes a problem when we
want to restart the paused animation without starting from the beginning
again.

The new link is the script node that remembers the position of the pausing
event on the original animation time-line and stores it in its internal variable.
This node is linked between the timer and the interpolators and transforms
the time-fractions from the timer. When its output reaches value of 1, it
resets its internal variable back to 0 - the animation has reached its end.

Our demo application consists of the VRML and Java part. Their roles
and relationships are indicated by the Fig. 5.

13

TimerTimer ScriptScript InterpolatorInterpolator

<0;1> <pause;1>

SCENE

VRML

Java

User Interface

Start&stop signals

Pause time-fraction

Time-fraction
listener

VRML event
generation

VRML event

Figure 5: The roles of VRML and Java parts of our demo.

The activity viewing program allows to select the activity from the list
and reads the selected file with the activity description. Then it builds the
activity set-up, loads the animation and connects it to the avatar. When
this is done, its main purpose is to view the animation with regard to the
avatar-object interaction events.

The time-fraction listener checks the output of the script and compares
it with the values listed as the relative times of avatar-object interaction
events. It triggers the creation of an appropriate interaction event according
to the result of this comparison. This event is then passed to the VRML
part, where the appropriate node receives the appropriate data. This results
in the desired action happening in the VR scene.

The example of the testing application for the simplest ActIPret project
‘insert CD scenario’ is shown in Fig. 6. Notice the control buttons in the
bottom of the figure and the overlayed text in red color in the middle left of
the figure.

Of course, viewing the activity from various viewpoints is supported.
Two viewpoints with the highest information value are typically the original
camera position and dynamically changed view through the virtual expert’s
eye.

7 Conclusions and future work

We have determined the type of data required for presentation of the human
expert activity in VR. We proposed the formal description of the expert

14

Scene controls

Animation viewer

Text display

in VR window

Figure 6: Our demo application and its user interface.

activity and created a program tool that uses this description to view the
recorded activity. This was the first step in creating a general ActIPret
demonstration module. The ActIPret simplest testing ‘insert CD scenario’
was used to test the methods of modelling the expert activity in VR. In its
simplicity, it still contains examples of problems that can be encountered,
namely the types of avatar-object interaction.

The proposed activity description is based on the VRML standard. The
viewer program was implemented in Java language (on both stand-alone
application and an applet platform) controlling the VRML scene via the
EAI interface. For running this program it is necessary to have Parallel
Graphics [12] Cortona VRML browser installed. This browser is available at
the Parallel Graphics web-site free of charge.

The objects used in the demo were modelled manually as well as the ani-
mation data. Obtaining the human animation data from the hand trajectory
using the inverse kinematics algorithm (CCD) is being worked on.

We aim to test the approach on more complex scenarios with richer expert
activity and 3D scene in the second and third year of the ActIPret project.

The future work will be also devoted to the interface and link between the
cognitive part of the project and VR module. Currently, the activity plan
and conceptual language for its description is sketched only vaguely. Not all

15

information needed for VR presentation is included.

We have to seek the ways how to obtain data we have selected as crucial
for modelling the activity. The process of creating arbitrary model of the
activity to be viewed has to be designed. This must be done in cooperation
with other partners of the ActIPret project.

References

[1] R. Boulic, P. Fua, L. Herda, M. Silaghi, J. Monzani, L. Nedel, and
D. Thalmann. An anatomic human body for motion capture. In Pro-
ceedings of EMMSEC ’98, Bordeaux, 1998.

[2] P. Fua, L. Herda, R. Plankers, and R. Boulic. Human shape and motion
recovery using animation models. In Proceedings of the 19th Congress,
International Society for Photogrammetry and Remote Sensing, Ams-
terdam, Netherlands, July 2000.

[3] L. M. Goncalves, M. Kallmann, and D. Thalmann. Programing be-
haviors with local perception and smart objects: An approach to solve
autonomous agents tasks. In Proceeding of SIGGRAPH 2001, 2001.

[4] M. Kallmann and D. Thalmann. Modeling behaviors of interactive ob-
jects for real time virtual environments. Journal of Visual Languages
and Computing, 13, 2002.

[5] S. Oore, D. Terzopoulos, and G. Hinton. Local physical models for
interactive character animation. In Computer Graphics Forum, The In-
ternational Journal Of The Eurographics Association, volume 21, pages
337 – 346, September 2002.

[6] M. Šonka, V. Hlaváč, and R.D. Boyle. Image Processing, Analysis and
Machine Vision. PWS, Boston, USA, second edition, 1998.

[7] M. Urban, T. Pajdla, and V. Hlaváč. Projective reconstruction from
n views having one view in common. In Bill Triggs, Richard Szeliski,
and Andrew Zisserman, editors, Vision Algorithms: Theory & Practice,
volume 1883 of LNCS, pages 116–131, Berlin, Germany, September 1999.
Springer.

[8] V. Štěpán and J. Žára. Teaching tennis in virtual environment. In
Proceedings of SCCG 2002, pages 38 – 43, 2002.

16

[9] Homepage of C.Babski, LIG - H-Anim humanoids and animations.
http://ligwww.epfl.ch/~babski/.

[10] MetaCreations Canoma 3D reconstruction tool homepage. http://www.
metacreations.com/products/canoma/.

[11] H-Anim (Human Animation Working Group). http://www.hanim.org.

[12] Parallel Graphics home-page (Cortona VRML browser). http://www.

parallelgraphics.org.

[13] Virtual reality lab (former LIG), EPFL Lausanne. http://vrlab.epfl.
ch.

17

	d72cover.pdf
	Virtual Reality presentation demo: Human activities in VR
	October 16, 2003

