
Multi-class Support Vector Machine
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Abstract

We propose a transformation from the multi-class SVM
classification problem to the single-class SVM problem
which is more convenient for optimization. The proposed
transformation is based on simplifying the original prob-
lem and employing the Kesler construction which can be
carried out by the use of properly defined kernel only. The
experiments conducted indicate that the proposed method is
comparable with the one-against-all decomposition solved
by the state-of-the-art SMO algorithm.

1. Introduction

The standard Support Vector Machines (SVM) [8] are
designed for dichotomic classification problem (two classes
only, called also binary classification). The multi-class clas-
sification problem is commonly solved by a decomposition
to several binary problems for which the standard SVM can
be used. For instance, one-against-all (1-a-a) decomposi-
tion is often applied. In this case the classification prob-
lem to k classes is decomposed tok dichotomic decisions
fm(x), m ∈ K = {1, . . . , k}, where the rulefm(x) sepa-
rates training data of them-th class from the other training
patterns. The classification of a patternx is performed ac-
cording to maximal value of functionsfm(x), m ∈ K, i.e.,
the label ofx is computed asargmaxm∈K fm(x).

For the SVM, however, the multi-class problem can be
solved directly [8, 9]. Let us consider that we are given
labelled training patterns{(xi, yi): i ∈ I}, where a pattern
xi is from ann-dimensional spaceX and its label attains a
value from a setK. The I = {1, . . . , l} denotes a set of
indices. The linear classification rulesfm(x) = 〈wm, x〉 +
bm, m ∈ K (the dot product is denoted by〈., .〉) can be

found directly by solving the multi-class SVM problem

min
w,b,ξ

1
2

∑
m∈K

||wm||2 + C ·
∑
i∈I

∑
m∈K\{yi}

(ξm
i )d ,

s.t.
〈wyi , xi〉+ byi − (〈wm, xi〉+ bm) ≥ 1− ξm

i ,
ξm
i ≥ 0 , i ∈ I , m ∈ K \ {yi} .

(1)

Similarly to the dichotomic SVM, the minimization of the
sum of norms‖wm‖2 leads to maximization of the margin
between classes. The slack variablesξm

i relax the contraint
inequlities for a non-separable case. The sum of(ξm

i )d

weighted by a regularization constantC means that the cost
function penalizes misclassification of training data. The
linear(d = 1) or quadratic(d = 2) cost functions are often
used.

To employ kernel functions [8] into non-linear classifi-
cation rulesfm(x), one has to formulate a dual form of
the multi-class SVM decision (1) which is defined in [8, 9].
This dual problem hask · l variables which is too large in
practical problems and consequently it is very difficult to
solve the dual quadratic problem directly. There is a so-
lution which employs a decomposition method and solves
series of smaller quadratic problems. However, the con-
straints of the dual problem are too complicated to allow
direct use of efficient decomposition methods developed for
dichotomic decision problems, e.g., the Sequential Minimal
Optimizer (SMO) algorithm [6].

We propose (i) to modify slightly the original prob-
lem (1) by adding the term(1/2)

∑
m∈K b2

m to the objec-
tive function, and (ii) to transform the modified problem to
the single-class SVM problem which is considerably sim-
pler than the previous formulation. Efficient algorithms can
be used to solve the new problem. Moreover, the proposed
transformation can be performed by the properly defined
kernel function only. The addition of the(1/2) b term in the
objective function was suggested by Mangasarian [5] for
the dichotomic problem. Solutions of the modified prob-
lem mostly coincides with the solutions of the original prob-
lem [5]. The following section describes proposed approach
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in details.

2. From multi-class SVM to single-class SVM

We consider modified multi-class SVM where the
(1/2) b2 is added to the objective function of the (1) which
leads to

min
w,b,ξ

1
2

∑
m∈K

(||wm||2 + b2) + C ·
∑
i∈I

∑
m∈K\{yi}

(ξm
i )d ,

s.t.
〈wyi , xi〉+ byi − (〈wm, xi〉+ bm) ≥ 1− ξm

i ,
ξm
i ≥ 0 , i ∈ I m ∈ K \ {yi} .

(2)
We name the problem (2) defined above as the multi-class
BSVM problem (B stands for the added bias). Next we
introduce a transformation which translates the multi-class
BSVM problem (2) to the single-class SVM problem. The
single-class SVM problem is defined as

min
w,ξ

1
2 ||w||

2 + C
∑
i∈I

(ξi)d ,

s.t. 〈w, zi〉 ≥ 1− ξi , i ∈ I .

(3)

This problem (3) can be already solved by algorithms which
are considerably simpler than the original problems (1) or
(2). The dual form of the problem (3) with the linear cost
functiond = 1 is

max
α

∑
i∈I

αi − 1
2

∑
i∈I

∑
j∈I

αi · αj · k(zi, zj) ,

s.t. 0 ≤ αi ≤ C , i ∈ I ,

(4)

wherek(zi, zj) was substituted for the dot products〈zi, zj〉.
The case with the quadratic cost functiond = 2 can
be solved as the separable case using the kernel function
k′(xi, xj) = k(xi, xj) + δi,j · 1

2C . The dual form of the
separable case is the same as the problem (4) up to the con-
straints which simplify to0 ≤ αi. We will describe two
simple algorithms for solving the single-class SVM prob-
lem in Section 3.

The transformation from the multi-class BSVM problem
to the single-class SVM problem is based on the Kesler’s
construction [1]. This construction maps the inputn-
dimensional spaceX to a new(n+1) ·k-dimensional space
Y where the multi-class problem appears as the single-class
problem. Each training patternxi is mapped to new(k− 1)
patternszm

i , m ∈ K \ {yi} defined as follows. Let us as-
sume that coordinates ofzm

i are divided intok slots. If each
slotzm

i (j), j ∈ K hasn + 1 coordinates then

zm
i (j) =

 [xi, 1] , for j = yi ,
−[xi, 1] , for j = m ,

0 , otherwise.
(5)

We seek a vectorw composed of vectorsw1, . . . , wk and
thresholdsb1, . . . , bk in the new spaceY as

w = [[w1, b1], [w2, b2], . . . , [wk, bk]] . (6)

For instance, whenk = 4 andyi = 3 then the vectorszm
i ,

m = 1, 2, 4 are constructed as

z1
i = [ −[xi, 1] 0 [xi, 1] 0 ]

z2
i = [ 0 −[xi, 1] [xi, 1] 0 ]

z4
i = [ 0 0 [xi, 1] −[xi, 1] ]

Performing the transformation (5) we obtain a set{zm
i : i ∈

I m ∈ K \ {yi}} containing(k − 1) · l vectors. Each con-
straint of the multi-class BSVM problem can be expressed
as〈w, zm

i 〉 ≥ 1 − ξm
i using the transformed vectors. It is

obvious that by substitutingw to the objective function of
the single-class SVM problem the objective function (3) be-
comes equivalent to the objective function (2) of the multi-
class BSVM. Consequently, the multi-class BSVM prob-
lem can be equivalently expressed as the single-class SVM
problem (3). At a first look the introduced transforma-
tion seems to be intractable because of increased dimen-
sion. However, in the dual form in which the data appears
in terms of dot products only the transformation can be per-
formed by introducing a properly defined kernel function.

Let zm
i and zn

j be two vectors fromY created by the
transformation (5). Note that the vectorzm

i has theyi-th co-
ordinate slot equal to[xi, 1], them-th slot equal to−[xi, 1],
and remaining coordinates equal to zero. The vectorzn

j is
created likewise. Consequently, the dot product〈zm

i , zn
j 〉 is

equal to the sum of dot products between[xi, 1] and[xj , 1]
which occupy the same coordinate slot. The sign of these
dot products is positive ifyi = yj or m = n and negative if
yi = n or yj = n. If all the numbersyi, yj , m, andn differ
then the dot product is equal to zero. The construction of
the dot product〈zm

i , zn
j 〉 can be easily expressed using the

Kronecker delta, i.e.,δ(i, j) = 1 for i = j, andδ(i, j) = 0
for i 6= j. The dot product betweenzm

i andzn
j is

〈zm
i , zn

j 〉 = (〈xi, xj〉+ 1) · (δ(yi, yj)
+δ(m,n)− δ(yi, n)− δ(yj ,m)) .

The dot products〈xi, xj〉 are replaced by the kernel func-
tion k(xi, xj) in the non-linear case. The kernel function
k′(zm

i , zn
j ) involving transformations (5) and non-linear

case is constructed as

k′(zm
i , zn

j ) = (k(xi, xj) + 1) · (δ(yi, yj)
+δ(m,n)− δ(yi, n)− δ(yj ,m)) .

(7)

It implies that solving the dual form (4) of the single-class
SVM problem with the kernel (7) is equivalent to solving
the dual form of the multi-class BSVM problem (2). As the
result of the dual single-class problem we obtain a set of
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αm
i , i = 1, . . ., m = 1, . . . , k, m 6= yi multipliers corre-

sponding to the transformed vectorszm
i . These multipliers

αm
i determine the vectorswm and thresholdsbm which can

be obtained by reverting the transform (6).
The normal vectorw in the transformed spaceY is equal

to w =
∑

i∈I

∑
m∈K\{yi} zm

i αm
i . The vectorwj ∈ X

occupies thej-th coordinate slot and is determined by the
weighted sum of vectorszm

i which have the non-zeroj-th
coordinate slot, so that

wj =
∑
i∈I

∑
m∈K\{yi}

xiα
m
i (δ(j, yi)− δ(j, m)) ,

bj =
∑
i∈I

∑
m∈K\{yi}

αm
i (δ(j, yi)− δ(j, m)) ,

holds. To classify the patternx in the non-linear case there
is need to evaluatefj = 〈wj , φ(x)〉+ bj which is equal to

fj(x) =
∑
i∈I

k(xi, x)
∑

m∈K\{yi}

αm
i (δ(j, yi)−δ(j, m))+bj .

3. Single-class SVM algorithms

The introduced kernel allows us to solve the multi-class
BSVM problem by the use of algorithms solving the single-
class SVM problem. Many efficient optimization algo-
rithms for the two-class problem can be readily modified
to solve the one-class problem. We have conducted several
experiments (see Section 4) using the modified Sequential
Minimal Optimizer (SMO) [6] and the kernel Schlesinger-
Kozinec algorithm [3].

The SMO for the single-class SVM problem can mod-
ify only one Lagrangian at a time since the dual form does
not contain the equality constrains. The framework of the
modified algorithm is preserved from the original one.

The kernel Schlesinger-Kozinec algorithm solves the
two-class SVM problem with quadratic cost function. This
problem is transformed to the equivalent problem where
the nearest points from the convex hulls are sought. The
nearest point from the origin to one convex hull is sought
in the modification to the single-class SVM problem. We
used the modified kernel Schlesinger-Kozinec’s algorithm
to train the multi-class BSVM problem with quadratic cost
function and the modified SMO algorithm for the linear cost
function. The implementation of both algorithms in Matlab
is available [2].

4. Experiments

We tested the proposed method on the benchmark data
sets selected from the UCI data repository [7] and Statlog
data collection. We scaled all the data to range[−1, 1]. Ta-
ble 1 summarizes the data sets used.

Table 1. Benchmark datasets used for testing.

number of number of number of
patterns classes attributes

iris 150 3 4
wine 178 3 13
glass 214 6 13
thyroid 215 3 3

Table 2. Results of comparison on the bench-
mark datasets. Measured: testing classifica-
tion error CE [%], training time [s] and number
of support vectors SVs.

1-a-a SMO M-1-SMO M-1-KSK
CE 2.7 2.0 2.0

iris time 0.12 0.22 0.44
SVs 17 30 19
CE 1.1 2.3 1.7

wine time 0.2 0.67 0.40
SVs 54 37 54
CE 37.0 28.7 31.1

glass time 14.10 4.06 1.37
SVs 150 167 177
CE 2.3 2.7 1.8

thyroid time 0.41 0.13 0.31
SVs 35 43 66

As a comparative approach we used the one-against-
all decomposition and the SMO [6] algorithm for learning
the decomposed dichotomic SVM problems which we de-
note 1-a-a SMO. To solve the single-class problem obtained
employing the proposed kernel we used (i) the simplified
SMO algorithm denoted as M-1-SMO and (ii) the kernel
Schlesinger-Kozinec algorithm denoted as M-1-KSK both
mentioned in Section 3.

We trained the classifiers using the Radial Basis Func-

tion (RBF) kernelk(xi, xj) = e−
||xi−xj ||

2

2·σ with the σ =
{2−3, 2−2, . . . , 23} and the regularization constantC =
{20, 21, . . . , 27}. Each from the7 × 8 pairs of(σ,C) was
evaluated using10-fold cross validation method. The re-
sults for parameters which yielded the best average testing
error rate are enlisted in Table 2. We also measured aver-
age values of (i) the number of support vectors and (ii) the
training time on training time on Pentium PIII/750Mhz and
(ii) number of support vectors.

3



5. Conclusions and future work

We propose a transformation from the multi-class SVM
classification problem (1) to the single-class SVM prob-
lem (3) for which efficient optimization algorithms exist.
First the original problem is slightly modified by adding the
term(1/2)

∑
m∈K b2

m. Then the modified problem is trans-
formed to the single-class SVM problem which is carried
out by the use of a properly defined kernel function only.

The experiments conducted indicate that the proposed
method is comparable with the one-against-all decompo-
sition solved by the state-of-the-art SMO algorithm. It is
worthwhile to investigate the proposed kernel with other ef-
ficient algorithms which can solve the single-class problem,
e.g. the Nearest Point Algorithm [4] or the Successive Over-
relaxation (SOR) algorithm [5].
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