
Integration Frameworks for Large Scale
Cognitive Vision Systems – An Evaluative Study

S. Wrede, C. Bauckhage and G. Sagerer
Bielefeld University, Faculty of Technology,
P.O. Box 100131, 33501 Bielefeld, Germany
{swrede,cbauckha}@techfak.uni-bielefeld.de

W. Ponweiser and M. Vincze
Vienna University of Technology, ACIN

Gusshausstrasse 27-29/E376, 1040 Wien, Austria
{ponweiser,vincze}@acin.tuwien.ac.at

Abstract

Owing to the ever growing complexity of present day
computer vision systems, system architecture has become
an emerging topic in vision research. Systems that inte-
grate numerous modules and algorithms of different I/O
and time scale behavior require sound and reliable con-
cepts for interprocess communication. Consequently, top-
ics and methods known from software and systems engi-
neering are becoming increasingly important. Especially
framework technologies for system integration are required.
This contribution results from a cooperation between two
multinational projects on cognitive vision. It discusses func-
tional and non-functional requirements in cognitive vision
and compares and assesses existing solutions.

1. Motivation and Background

Apart from traditional research on algorithms for low
and high level computer vision, the last 20 years have seen
considerable efforts on integrating such algorithms into
larger systems. During the last decade, vision system re-
search further advanced to the ambition of developing cog-
nitive computer vision systems (CVS) [2, 4]. These are sys-
tems which not only involve computer vision but also em-
ploy machine learning and resoning in order to extend prior
knowledge or to verify the consistency of results as well as
to manage several computational modules [6].

Obviously, if fast online capabilities for cognitive vision
are desired, the complexity of the involved subtasks requires
to distribute computations over several machines. Looking
at the design of distributed systems, however, often reveals
additional degrees of complexity. Distributed architectures
usually consist of many components, connectors, patterns
and various rules for the connections among building blocks
[15]. In order to ensure architectural soundness, integration
frameworks thus are mandatory.

Throughout the past decade, several frameworks for vi-
sion systems have been proposed [17, 7, 11, 5, 9, 10]. All
these frameworks were tailored to certain project specific
requirements and thus are of limited generality. However,
there are common needs in traditional as well as in cogni-
tive computer vision that can easily be identified (e.g., effi-
cient handling of image data). These of course provide gen-
eral criteria that can guide a comparison of frameworks.

Practical experience shows that if large scale vision sys-
tems are being implemented (in the worst but nowadays
somewhat usual case by teams of researchers from differ-
ent institutes located in different countries), one has to con-
sider not only domain specific requirements but always will
face problems of programming in the large. Therefore, non-
functional requirements have to be taken into account, too.
Common examples encountered in practice are reusability,
scalability, or transparency. As a consequence, techniques
and approaches from software engineering should be cared
for when designing vision systems.

Due to the increasing importance of this topic and since
only few and less comparative reports [3, 13] are available,
an evaluative study was recently requested by a european re-
search network. As it is carried out in collaboration among
several research groups with a background in integrated vi-
sion systems, experience with various frameworks gathered
from different projects and applications is being accounted
for. Methodologies and results will be reported here. In or-
der to explain our approach, the next section will outline
functional and non functional requirements for (cognitive)
vision integration frameworks. The resulting classification
scheme shall be discussed in section 3 and exemplary re-
sults will be presented afterwards. Finally, a conclusion will
close this contribution.

2. Identification of Requirements
Based on experience with integrated systems (cf. e.g. [1,

8, 11]) this section reviews functional and non-functional
requirements that have been identified as the most impor-
tant for the construction of such systems.

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

2.1. Functional Requirements
Cognitive vision systems have to process image data and

abstract representations derived therefrom. Hence, Support
for User Defined Datatypes and Suitability for Binary Data
Transfer are required. Among the core features of CVS pre-
sented in the previous section are reasoning and learning.
The reasoning property is a pure functional one. There is no
specific requirement for the framework resulting thereof.

Learning and adaption in a CVS requires some kind of
memory so Data Management Facilities must be provided.
Since adaption and attention control induce dynamics into
the system, Dynamic (Re-)Configuration of architectural
building blocks is desired. According to Christensen [2],
CVS should be embodied and consequently requires at least
a hybrid architecture (Independence of Architectural Styles)
to enable sensory bottom-up as well as actuatory top-down
processing. In terms of Programmatic Coordination, a CVS
can thus be viewed as a reactive system whose behavior is
constrained by the task.

Following the argument of Christensen and Crowley [3]
we believe that Evaluation Support is essential, e.g. the pos-
sibility to experiment with recorded data flow.

As motivated above, features for the construction of par-
allel distributed software systems are especially important.
Distributed engineering attributes capture this requirements.
First of all this includes the Level of Transparency [16]
provided by the integration framework. As far as possible
we require (Explicit) Interface Specifications because ex-
perience shows that this reduces the risk of interface mis-
matches. Possible sources for errors are further reduced if
the framework allows for (Active) System Introspection [3]
and Error / Exception Handling. These features directly
support the Robustness of the framework.

Furthermore, the Framework Performance and Scalabil-
ity are of course important integration framework features
but since they always depend on specific application sce-
narios, they cannot be rated generally.

2.2. Non-Functional Requirements
In system integration, non-functional requirements are

often neglected and considered to be less important. How-
ever, experience reveals that they are crucial for project suc-
cess. The following demands either represent best practices
resulting from previous projects of our groups or describe
insights gathered from software engineering research.

As integration is a complex task and requires profound
knowledge of middleware like, e.g. CORBA, many vision
researchers admittedly concentrate on the development of
single modules. Consequently, the goal of frequent system
integrations could be achieved more often if module devel-
opers were able to easily intergrate their components. Thus,
Usability and simplicity in terms of a flat Learning Curve
are basic essentials of an integration framework.

In long-term research projects aiming at integrated
demonstrators, specifications or datatypes may change fre-
quently. Since the resulting modules should be flexible in
terms of changeability, Ease of Modification is also impor-
tant. For example, the impact of interface changes on an ex-
isting system architecture should be minimal to avoid a
versioning problem as known from CORBA [14].

Another requirement directly related to usability and
ease of modification is Rapid Prototyping. The ability to
use a framework not only for prototyping of single modules
but also of a whole system supports iterative development.
Thus wrong directions in system evolution can more eas-
ily be identified, especially if integration is performed on a
regular basis starting at an early project stage.

As reusability of exisiting software modules increases
productivity, the Integration of Legacy Code or legacy mod-
ules, e.g. for object recognition, must be enabled. Ways of
integrating existing modules broadly range from dynami-
cally loadable plugins or object-oriented wrapper facades
for exisiting C libraries to a closed framework that does not
allow any external dependencies due to constraints enforc-
ing a parallel control architecture.

Framework Sustainability and Framework Maturity pro-
vide strategic criteria if one has to choose between differ-
ent framework alternatives. Sustainability characterizes the
current and expected project activity. In either case, closed
or open source framework development, an active develop-
ment community will ensure support and further bug fix-
ing. The maturity level of a framework characterizes in how
many projects an integration software has been used and
which level of stability it has reached.

Finally, the Available Documentation is of invaluable im-
portance. Especially in frameworks resulting from research
projects this feature often is neglected. By documentation
we do not mean only an appendix in a corresponding PhD
thesis. It rather necessitates an up-to-date reference manual
and a complete API documentation. For successful reuse of
an existing technology this is mission critical.

2.3. Additional Features

So far, we only considered criteria for which a qualita-
tive rating is possible. Some features, however, will improve
the framework’s applicability in system integration but can-
not be benchmarked. These are called additional features.

The License Type, Supported Architectures and Operat-
ing System(s) as well as available Language Bindings are
criteria that help assessing the suitability of a framework
for a specific purpose and environment.

The assessment of a communication framework is com-
pleted by considering which Communication Patterns (e.g.
streams, event channels, etc.) it provides and by regarding
its External Dependencies and Standards Compliance.

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

++−− − o +

 Independence of Architectural Styles

 Data Management Facilities
 Programmatic Coordination

 Level of Transparency

 Evaluation Support

 Error / Exception Handling
 (Active) System−Introspection
 (Explicit) Interface Specification

 Usability / Learning Curve

 Robustness

 Ease of Modification
 Suitability for Rapid Prototyping
 Integration of Legacy Code

 Framework Maturity
 Framework Sustainability

 Dynamic (Re−)Configuration

 Language Bindings

 Suitability for Binary Data Transfer
 Support for User Defined Datatypes

 ImaLab Profile

 C, C++, Schema (Lisp), Prolog

 Core Requirements from CVS

 Additional Features
 Available Documentation

 Available Communication Patterns

 License Type
 Supported Operating System(s)
 Supported Architectures
 Standards Compliance
 External Dependencies
 Language Bindings

 (local) Procedure Call

 Ravi, PrimaVision, svideotools, ...

 IA32
 Linux
 GNU GPL

 Distributed Systems Engineering Attributes

 Non−Functional Requirements

Figure 1. Graphical evaluation scheme.

3. Evaluation Scheme
Dealing with framework assessment, a common evalua-

tion scheme did not exist so far. We thus propose a scheme
based on the requirements identified above. For each crite-
rion, we apply a five step scale abstractly denoted as {- -,
-, o, +, ++}. As an example for the meaning of these units,
consider the assessment of the feature Support for user de-
fined datatypes: In a framework with only a fixed set of data
types that can be exchanged between architectural building
blocks, support for user defined data structures is almost im-
possible (- -). A difficult (-) rating would be assigned, if for
communication purposes artificial data types must be de-
composed into the native datatypes provided by the frame-
work. If the required coding effort is equivalent to a defini-
tion of a class in OOP including serialisation, this would be
a reason to rate the framework as being neutral (o) regard-
ing the data structure support criterion. If standard serialisa-
tion methods are provided, the feature is supported (+). An
automatic (++) case would require no explicit communica-
tion related coding at all.

Details on how the other functional and non-functional
criteria are mapped to the five step scale can be found in
[12]. A caveat is that especially for the non-functional cri-
teria the assessment is based on the subjective experiences
of the authors. Thus, although our assessment applies soft-

ware engineering principles as far as possible, we would
very much appreciate discussions on these important group
of criteria for integration frameworks.

4. Results
One goal of our evaluation is to identify frameworks that

support the development of cognitive vision system. As an
example, Fig. 1 shows the detailed results for the ImaLab
framework. Complete results for the other frameworks con-
sidered in our study can be found in [12]. Based on these
results, individual frameworks can be assigned to four dif-
ferent classes and the strengths and weaknesses of these
classes can be compared in general. Typical representatives
of these classes and their most discriminative features are
shown in Fig. 2. Although Vision Libraries like VXL, IUE
or openCV can serve as a basis for the implementation of
computer vision modules, they are not suited for the inte-
gration of a large scale vision system. Consequently, mere
library collections are not considered here.

Visual Image Processing Environments like ImaLab first
of all provide facilities to quickly create pipe-and-filter style
vision systems allowing for for rapid prototyping. Often
they come along with easy to use graphical user interfaces.
However, this class of frameworks normally lacks support
for distributed architectures which prevents them from be-
ing used for large scale vision systems.

Classical Middleware approaches constitute another
group; a typical example is the CORBA implementa-
tion TAO. On the one hand, middleware approaches are
very generic and powerful. On the other hand they suf-
fer from this genericity because it complicates their
use. Moreover, they do not support requirements spe-
cific for the cognitive vision domain. Frameworks like
SmartSoft or OROCOS are designed for the Robotics Do-
main. Since modern robotics also deals with machine
vision, the frameworks of this group fulfill some of the re-
quirements identified in section 2. They often allow for dis-
tribution and provide transparency. However, in robotics,
real-time constraints are a major topic which introduces ad-
ditional complexity in using these frameworks. Further-
more, their integration facilities are often closely coupled
to components for robot control.

The last class identified in our study consists of two
examples especially designed as Cognitive Vision System
Frameworks: While XCF [17] focuses on data manage-
ment facilities, distribution and rapid prototyping, zwork
[11] mainly deals with the programmatic coordination and
dynamic reconfiguration required in dealing with the con-
trol aspect of cognitive vision systems.

As it can be seen from Fig. 2, each group of frame-
works concentrates on different aspects in system integra-
tion. Thus, system engineers will have to carefully identify
their needs and project requirements and correspondingly

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

Architectural
Independence

Legacy Code
Integration

Level of Transparency

Binary Data Transfer

Rapid Prototyping

Interface Specification

(a) ImaLab

−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

Architectural
Independence

Legacy Code
Integration

Level of Transparency

Binary Data Transfer

Rapid Prototyping

Interface Specification

(b) The ACE ORB
−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

Architectural
Independence

Legacy Code
Integration

Level of Transparency

Binary Data Transfer

Rapid Prototyping

Interface Specification

(c) SmartSoft

−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

−

o

+

++

−−

Architectural
Independence

Legacy Code
Integration

Level of Transparency

Binary Data Transfer

Rapid Prototyping

Interface Specification

(d) zwork

Figure 2. Comparison of different frameworks along their most discriminative features.

decide for a most suitable framework. A first guideline to
do so is given by the proposed evaluation scheme.

5. Conclusion
This paper identified functional and non-functional re-

quirements for the integration of cognitive computer vision
systems. Taking into account experiences from previous in-
tegration projects, we presented an evaluation scheme for
a fast and straightforward assessment of software frame-
works for cognitive vision. Typical groups of frameworks
were identified and it became apparent that by now there is
no all-purpose solution for the integration of large scale vi-
sion systems. Moreover, although the development of vision
systems is of increasing importance, the non-functional key
criteria to successfully develop such systems seem to have
been neglected so far. Consequently, we hope that this con-
tribution will foster discussions within and across commu-
nities dealing with the design of intelligent systems.

Acknowledgements
This work has been partly supported by the EC Vi-

sion Specific Action 13-2 and the IST Projects 2001-32184
ActIPret and 2001-34401 VAMPIRE.

References

[1] C. Bauckhage, G. Fink, J. Fritsch, F. Kummert, F. Lömker,
G. Sagerer, and S. Wachsmuth. An Integrated System for Co-
operative Man-Machine Interaction. In Proc. CIRA, pages
328–333, 2001.

[2] H. Christensen. Cognitive (vision) systems. ERCIM News,
pages 17–18, April 2003.

[3] H. I. Christensen and J. L. Crowley, editors. Experimental
Environments for Computer Vision and Image Processing.
World Scientific Publishing, 1994.

[4] J. Crowley and H. Christensen, editors. Vision as Process.
Springer, 1995.

[5] B. Draper, G. Kutlu, E. Riseman, and A. Hanson. ISR3:
Communication and Data Storage for an Unmanned Ground
Vehicle. In Proc. ICPR, volume I, pages 833–836, 1994.

[6] European Research Network for Cognitive Computer Vision
Systems, 2003. http://www.ecvision.info.

[7] G. Fink, N. Jungclaus, F. Kummert, H. Ritter, and G. Sagerer.
A Distributed System for Integrated Speech and Image Un-
derstanding. In Int. Symp. on Artificial Intelligence, pages
117–126, 1996.

[8] J. Fritsch, M. Kleinehagenbrock, S. Lang, T. Plötz, G. A.
Fink, and G. Sagerer. Multi-modal anchoring for human-
robot-interaction. Robotics and Autonomous Systems, 43(2–
3):133–147, 2003.

[9] K. Konstantinides and J. R. Rasure. The Khoros Software
Development Environment For Image And Signal Process-
ing. IEEE Trans. on Image Processing, 3(3):243–252, 1994.

[10] C. Lindblad, D. Wetherall, and D. L. Tennenhouse. The
VuSystem: A Programming System for Visual Processing of
Digital Video. In ACM Multimedia, pages 307–314, 1994.

[11] W. Ponweiser, G. Umgeher, and M. Vincze. A Reusable
Dynamic Framework for Cognitive Vision Systems. In
Workshop on Computer Vision System Control Architectures,
2003.

[12] W. Ponweiser, M. Vincze, S. Wrede, and C. Bauckhage.
Overview of Software Frameworks for Use in Cognitive Vi-
sion Approaches. Technical report, ECVision Specific Ac-
tion 13-2, 2004. http://www.ecvision.info.

[13] A. Rares, M. Reinders, and E. Hendriks. Mapping Image
Analysis Problems on Multi-Agent-Systems. Technical re-
port, TU Delft, November 1999.

[14] D. C. Schmidt and S. Vinoski. Object interconnec-
tions: CORBA and XML, part 1: Versioning, 2003.
http://www.cs.wustl.edu/ schmidt/report-doc.html.

[15] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[16] A. S. Tanenbaum and M. van Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall, 2002.

[17] S. Wrede, J. Fritsch, C. Bauckhage, and G. Sagerer. An
XML based Framework for Cognitive Vision Architectures.
In Proc. ICPR, 2004.

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

