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Abstract

A real-world limitation of visual servoing approaches is the sensitivity of visual tracking

to varying ambient conditions and background clutter. This work presents a model-based

vision framework to improve the robustness of edge-based feature tracking. Lines and

ellipses are tracked using Edge Projected Integration of Cues (EPIC). EPIC uses cues in

regions delineated by edges which are de�ned by observed edgels and a priori knowledge

from a wire-frame model of the object. The edgels are then used for a robust �t of the

feature geometry, but this sometimes will result in multiple feature candidates. A �nal

validation step uses the model topology to vote for the most likely feature candidates.

EPIC is suited for real-time operation. Experiments demonstrate operation at frame

rate. Navigating a walking robot through an industrial environment shows the robust-
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ness to varying lighting conditions. Tracking objects over varying background indicates

robustness to clutter.

1 Introduction

In recent years robots began to invade service applications. First mobile systems, which navigate

in supermarkets or hospitals, are commercially available. In many laboratories robots are

developed to aid the elderly with tasks for daily life. Speci�c research e�orts envision a closer

interaction of humans and robots. The most prominent example is the development of humanoid

robots, primarily in Japan [InYo00, Hond01].

A common denominator of these systems is the need to interact with the environment.

Two functions of interaction are required in almost all cases of autonomous robotic systems:

navigation and object grasping. Both functions require some form of sensing to adapt and to

react to present situations. Vision is by far the most powerful sensor to provide the information

needed for object grasping and navigation. Hence, several groups are developing systems that

use models of the environment or the objects for detection and visual servoing (e.g., workshop

at ICRA 1998 [ViHa00] or the ICVS 1999 conference [Chri99]). The technique of controlling

a machine using visual input is referred to as visual servoing [HuHa96]. When analyzing the

capabilities of the systems presented, two diÆculties are encountered regularly:

� Operation of the vision controlled robot arm is relatively slow, and

� Operation of visual sensing is not as robust as it needs to be for realistic applications.

The control problem has received a lot of attention in the literature (e.g., [Cork96, HuHa96])

but robust vision is just as critical and has received little attention to date [ViHa00].

2



This work addresses both, robustness, to enable tracking of objects in realistic scenarios,

and also control, through fast attentive visual processes. A method for robust edge tracking

is presented such that objects can be tracked under varying lighting conditions and in front

of a cluttered background. The method is embedded in a model-based tracking framework

and experiments in realistic environments demonstrate the robustness of object tracking and

successful navigation of walking and wheeled mobile robots. The framework is based on the

analysis of the dynamics of visual servoing to maximize the target velocity that can be tracked

[Vinc00] and has been named "Vision for Robotics" (V4R) indicating its primary purpose. The

speci�c characteristics of V4R are:

� Edge Projected Integration of Cues (EPIC), which integrates image and model

knowledge to obtain robust image feature tracking, and

� Integrated primitives for model-based tracking containing feature tracking in image

windows, a pose estimator and the interface to a CAD model facility.

With cues we denote characteristics that can be found or derived from image data. The gradient

cue is used to locate edges and region cues, such as intensity, color, texture, motion, or depth,

describe characteristics between edges. The term image feature refers to geometric entities such

as line or ellipse, which are found in the image by a �t procedure using the results of EPIC.

The image features (referred to as features for short) are projected into the image using the

model of the target object and its 3D model features. The main contribution of this work is

a robust feature extraction/�nding method embedded in a framework for real-time tracking.

Section 2 describes the architecture of the framework and the relation to the CAD-system and

robot. Section 3 outlines the main components of the framework. Feature tracking using the

windowing approach, EPIC and a �nal validation method are described in more detail in Section
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4. Section 5 presents the experiments of tracking ellipse arcs, navigation of a walking robot

in a ship section and the navigation of a mobile robot in an oÆce setting. We demonstrate

an ability to track real-world objects without any arti�cial markers that is robust to cluttered

background and to varying lighting conditions while the object or camera moves in a very non-

smooth fashion. The scheme is open to integrate other cues and future work is described in the

�nal Section 6. The next section will present a discussion of related work.

1.1 Related Work

A reference work of model-based vision is the dynamic modeling approach [DiGr88], which uses

local feature processing and model prediction. Models explain dynamic features of cars, which

are recognized due to the dark area beneath them. Vehicle steering is successfully demonstrated

on German highways.

The geometry of CAD models is utilized in approaches for navigation and object tracking.

Mobile robots hold (or build up) a wire-frame map of the building and use landmarks, such

as walls or pillars, for navigation (e.g., [CrSt92, KoKa92, KiNe98, EbBa00]). Typically the

approaches use the full image and therefore allow a relatively slow robot velocity. The common

approach is to project the features of the model (commonly lines) into the image and to match

the feature with the nearest gradient edge [Lowe92, Genn92, ToSc97, WuHi97]. Close lines

are ambiguous and can be handled by elimination [NaMu00]. Nevertheless, approaches lack

robustness in environments with cluttered walls or changing illumination.

The diÆculties are obvious from implementations. In a space application edge detection

is simpli�ed by dark background and an object consisting of parts with di�erent surface char-

acteristics and dedicated hardware is required to achieve frame rate [WuHi97]. In another
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application the extraction of the circles around the dark holes of the pistons of a motor block

is robust as long as the holes are dark [JoLa00], and image processing requires dedicated

hardware. Another example is visual navigation along a corridor using con�dence ellipsoids

[KoKa92]. A sequel paper [OhKo98] presents another vision technique to faster traverse the

same corridor with uncluttered walls. The work in [EbBa00] realizes fast indexing to obtain

feature correspondence. It exploits 2D image and 3D stereo lines, though the authors concede

the \reliability-bottleneck" introduced by using one type of cue (gradient) and feature.

While in the above works geometric features such as line are extracted from the image

for pose estimation, the approach in [Harr92] uses individual control points along object edges.

The control points are searched normal to the edge direction and then used for pose estimation.

[ThRe01] improves this work by adding a median �lter to detect outliers �rst for �tting the

line and then for �tting the pose. They report the improvements using black and white objects

with little clutter in the background. The objective of this paper is to extend these results

with an image processing method that enables tracking realistic objects in front of cluttered

background using cue integration.

Integration is not a new technique to increase robustness of feature detection. First works

date back more than ten years. For example, Aloimonos described methods using optical 
ow

as a means of integration to solve a variety of tasks such as the estimation of target motion and

egomotion [AlSh89]. Since motion is already a computationally expensive cue, interaction with

other cues was restricted. In a second technique shape was obtained from unifying shading and

texture. Another early approach used color and disparity to extend the system capability in

stereo matching [HoAh89]. The work in [GaGe89] used color, motion, stereo and texture to

label edges. The integration links each cue with the intensity edges using a linear classi�er.
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Strong edges are emphasized to aid the labeling process.

These early approaches used strong gradients to obtain robust results. Simple cues were

used in an adhoc manner to label the type of edge. The goal of today's integration methods

is to move towards robust edge extraction of weak signals. While strong gradient responses

are robust they are typically in real-world scenes not available. Weak signals are a common

limitation of robust image processing. The integration approaches attempt to use several cues

to obtain robustness. For example, color and image position are used to track persons [WrAz97]

or Bayesian classi�cation is used to integrate color, blobs, and motion in face tracking [Schi00].

One of the most advanced approaches is the integration of motion, brightness and depth for

person tracking [ShOk00]. The work in [KrCh00] demonstrates that weighted consensus voting

of �ve cues improves the performance of view-based tracking with a fuzzy fusion method. The

problems that have been encountered are the diÆculties to obtain fast computing and to handle

the di�erent functionality of the cues, e.g., local properties such as edges versus area properties

of image regions.

This work also pro�ts from a framework that uses a prede�ned hierarchy of trackers based

on more and more speci�c cue extraction methods to track the target [ToHa99]. Faces are

tracked by �rst locating face color at low resolution and then following the face accurately with

a template tracker. To �nd door handles, the search �rst looks for vertical edges and then uses

an image template to locate the handle [FeMa98]. The idea is to fall back to lower resolution

trackers for recovery if a cue or tracker fails. On the other hand, all cues must be salient to

�nally locate the object.
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2 System Overview

Modern robots demand external sensor information to plan their interaction with the environ-

ment. The main goal of the software tool V4R (Vision for Robotics) is the pose determination

of objects of the environment with respect to the robot. For object tracking as well as for pose

calculation models of the objects are essential and will be used to obtain robust signals from

visual processing (see Section 4). Figure 1 shows the inputs and the outputs of V4R.

V4R

Model
Image Pose

Figure 1: V4R in the user's view.

The inputs to V4R are:

� Themodel expected by V4R is a wire-frame model of the target object, which can be the

object to grasp or the environment to navigate in. The object model provides the model

features such as line, circle (projected to an ellipse in the image), junction or region.

� The image is the intensity/color data captured by a camera.

� The pose is the position and orientation of the target object determined in the last

tracking cycle of V4R.

The output of V4R is:

� The new pose calculated from the new image data using the model and the previous

pose estimate. The pose can also be used to locate individual features in the image.

Each input has a di�erent frequency. The wire-frame model is sent once during the startup

of V4R or when beginning a new task with a new object. From the model the visible feature
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in the image are calculated depending on the camera pose. The visibility information of the

model is updated depending on the view change (e.g., when the robot moves a larger distance

in the environment) at about a rate of seconds. In contrast, the images are acquired at frame

rate and the pose is calculated at the same rate and used as feedback signal.

V4R can be used in combination with a robot in di�erent ways, depending on the placement

of the camera. It is possible to mount the camera at a �xed position and detect both the robot

and the work piece in one image (end-point closed loop [HuHa96]). Another option is to mount

the camera near the gripper of a robot or to �x the camera on a camera head that is mounted

itself on a mobile robot and to calculate the relation between the object and the camera (end-

point open loop [HuHa96]). In the latter two approaches the pose of the object with respect to

the robot can be calculated by transforming the calculated object pose using the pose of the

camera relative to the robot. In each case V4R communicates with the components as depicted

in Figure 2.

CAD System

Camera

V4R Robot
Pose Movement

Model

Image

Pose

Task Trajectory

Figure 2: The principal components communicating with V4R.

The main characteristics of the components, brie
y, are:

� A CAD system provides two functions. First, it is used by the user to de�ne the target

robot trajectory for the given task in terms of a sequence of robot poses. And second,

it provides the model of the target object, which is projected into the image to obtain
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the visible image features depending on the camera pose. The CAD system presents the

model in the form of a wire-frame model to V4R. The wire-frame model comprises 3D

coordinates of vertices, describes the topology of vertices, edges and regions, speci�es the

geometry of the model features, and gives the attributes of features. The CAD system

computes the visible features for a given camera pose. V4R is able to determine the

visibility of feature as part of the tracking procedure only for small pose changes and

convex objects. The CAD system will resend the actually visible features in the image, if

the robot moves over longer distances and the visibility changes signi�cantly. The objects

are considered to be opaque.

� The camera is responsible for image acquisition and is characterized by a set of intrinsic

and extrinsic camera parameters. An optional camera head can be used to �xate the

target object in the image and to increase the search area beyond the �xed view angle of

the camera.

� The robot is the user of V4R. It takes the pose estimates and the target trajectory and

performs the required motion. V4R can be also used to track objects with an active

camera head or a pan/tilt unit. In this case the goal is usually to keep the target object

in the center of the image using the target's image position determined by V4R.

Optionally a second vision system can be a component which is able to deliver additional

image feature data. This auxiliary information can be used for Pose Calculation in V4R. Section

5.2 presents a system where a stereo vision system communicates with V4R. The experiments

in Sections 5.2 and 5.3 will present two examples of V4R being used to deliver pose as indicated

in Figure 2.
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3 V4R Components

The goal of this section is to outline the functionalities of V4R. The main task of V4R is

model-based visual feature tracking to estimate the 3D-pose of an object relative to a reference

coordinate system. V4R can presently handle geometric features such as lines, junctions, ellipse

arcs, and regions, which correspond to a wire-frame model coming from a CAD system.

The primary goal of the visual processing is to provide robust features in real-time. The

secondary goal is to deliver the feedback result as fast as possible, because the latency of the

feedback signal is the main factor to in
uence the dynamic performance, i.e., the maximal track-

ing velocity that can be reached [Vinc00] (see Section 4.1.2 for details). This analysis presents a

fundamental result for visual servoing tasks and applies to a large range of applications: active

vision systems as well as servoing robots using �xed or robot-mounted cameras.

The real-time criterion can only be met by processing a small subset of the total image

data. The consequence is to use a windowing method similar to the approach in [HaTo98].

Figure 3 illustrates the functional partitioning of V4R. The following paragraphs outline the

main functions:

Projection

Visibility
check

Tracking
Pose

Calculation

Objectside

2D Feature
position

2D Feature
position
found

Images3D Model: wireframe

Pose

V4R

Figure 3: The main functions for object tracking and pose estimation in V4R. Objectside 2

fleft, right, bothg denotes which side of an edge is the object.

Visibility Check Before the model features are searched for in the image at each tracking
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step a visibility check of these features has to be performed according to the current pose

estimation. This ensures that only those features are searched for which are estimated

to be visible in the image. For robust edge detection it is also useful to know if an edge

is part of the boundary of the object (i.e., an edge between object and background) or

an edge within the object. Since the background is changing unpredictably just those

sides of an edge (with respect to the edge direction), which are part of the object, are

of interest for further examination. This information is extracted when examining the

visibility of surfaces and it is then sent to the tracking component (see Fig.4).

Line 2:
 ObjectSide = both

Line 3:
 ObjectSide = both

Line 4:
 ObjectSide = left

Line 1:
 ObjectSide = left

Line 5:
 ObjectSide = left

Line 6:
 ObjectSide = left

Figure 4: The value of the ObjectSide 2 fleft, right, bothg for some lines derived from the

model and the camera pose.

Projection The search process is initialized by projecting the model into the image to provide

an approximate position of the image features. At this location a tracking window is

placed in which the actual edge is searched for by the tracking function.

Tracking The goal of the tracking component is to robustly extract the 2D-position of the

features in the image and is described in detail in Section 4.

Pose Calculation The pose calculation function in V4R computes the pose of the camera
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with respect to the modelled object. This pose is then transformed into the pose of

the robot either relative to the environment (for navigation) or relative to the target

object (for object grasping). This is done by �tting the image features extracted by the

tracking component to the corresponding model feature received from the CAD system.

The algorithm employed is based on a method proposed by Wunsch [WuHi97] and was

modi�ed to detect outliers (similar to [ThRe01] using the residuals of each feature [Kr97].

The Wunsch algorithm was chosen because it is fast and therefore well-suited for object

tracking. It can handle 2D lines, junctions, and circles (which appear as ellipses in the

image) and 3D junctions (which are utilized in the experiment in Section 5.2). Pose

estimation �nally reports a least squares �t for the object pose. Outlier detection is most

e�ective in case of redundant features, which can be expected for non trivial objects.

Examples are given in the Section 5.

4 Robust Feature Tracking

This section will outline the approach proposed to improve the robustness of feature tracking.

The main idea is (1) to integrate several cues in EPIC and (2) to use model knowledge to dis-

ambiguate multiple feature candidates in a validation step. These two functions are integrated

into a scheme to track objects described by a wire-frame model. The principal operation of the

tracking function of Fig. 3 is summarized as follows (see Fig. 5):

1. Set the tracking window for each feature of the wire-frame model and warp the image

window along the main feature extension (line length or ellipse circumference),

2. Extract relevant edgels using EPIC,
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3. Fit the feature geometry to the edgels using a probabilistic RANSAC [FiBo81] scheme

and obtain feature candidates, and

4. Validate feature candidates using the topology of the features in the model.

The next four subsections describe these steps in greater detail. The emphasis of this paper is

to describe the improvement of step 2 towards threshold-free adaptation to changing conditions

(Section 4.2) and the enhancement of robustness when adding step 4 (Section 4.4). The other

steps will be described brie
y to provide a complete overview of the approach.

EPIC

Model:
geometry

Validation

Candidates
of feature

Model:
topology

Tracking

Geometry
fitting

Edgels
pre-selectedWindow

extraction

Warped
window

2D Feature position found

2D Feature
Position

 2D
Feature
 position
 found

Object sideImage Image

Figure 5: The functions to obtain robust edge tracking of one feature. ObjectSide denotes which

side of an edge is the object.

4.1 Window Extraction

The window extraction consists of two steps: (1) The de�nition of position and size of the

window, where the feature is expected and (2) the acquisition of the image data. The following

subsections describe the procedure.

4.1.1 Placing the Window

Three cases are distinguished for placing the tracking windows in the image. The �rst case is

the initialization. It can be executed either manually by placing the window in the image or
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it can be performed using a projection of the model features of the wire frame model into the

image (indicated in Figure 3). The projection uses a pose estimate, which is either given by

the CAD system or provided by the user. The experiments in the RobVision project used a

second vision component to ful�l this task (Section 5.2).

The second case is regular tracking. Once the feature has been found, in the next tracking

cycle the window is placed at the same location (assuming a zero velocity image feature motion

model) or at the predicted feature location (e.g., using a Kalman �lter for prediction as in

[DiGr88]).

The third case is the response to the detection of mistracking. This can be a result of

not �nding the feature in the tracking window or when the feature has been recognized as an

outlier in pose estimation. If only a few features are mistracked and suÆcient features are

found for pose estimation, the window of the mistracked feature(s) is placed in the image using

a re-projection. This enables recovery from mistracking.

4.1.2 Window Warping

A design principle of the V4R Framework is the window-based tracking approach. This ap-

proach is recommended from studying the dynamics of visual tracking [ViWe97] and visual

servoing [Vinc00]. The studies indicate that highest target velocity of tracking is achieved

when processing time is equal to image acquisition time. Hence, the window size must be

set such that the windows can be processed within 40 ms, corresponding to the frame rate of

standard video cameras.

The consequence of the dynamics analysis requires us to set the window size to obtain the

small calculation time needed. If several windows are used, the sum of the time to process all
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windows must be smaller than the frame time [ViWe97].

Tracking searches for the desired feature by processing all pixels in the image window.

Therefore the processing time is proportional to the number of pixels in the image. For line

tracking V4R realizes on a PC with 350 MHz a time of about 0.003 ms per pixel. Therefore one

window of size 40� 40 can be tracked in about 5 ms, which includes the time for all tracking

steps within V4R.

Line features are warped within windows resulting in the line being roughly vertical within

the tracking window. Edge �nding can now operate along each horizontal row, a technique

inspired by XVision [HaTo98]. While the localization perpendicular to the edge direction

is determined in the tracking window, the localization along the edge direction can only be

achieved by intersecting the edges at junctions (refer to Section 4.4.1).

In the experiments we used a width of 40 pixels and a height of nominally 40 pixels to

achieve the calculation time requirement. If lines are longer, the window is sub-sampled in the

vertical direction (along the extension of the line) to keep processing time constant (see Figure

6). This sub-sampling is executed automatically using powers of 2, such that line length in the

warped window varies between 20 and 40 pixels. This e�ect is indicated by the black area at

the bottom of the warped windows in the Figure.

Ellipse features are tracked by placing tracker lines normal to the circumference of the

contour. Tracker lines are tracking windows of height one. The edge is vertical in the warped

image row vector. Figure 7 shows an example of placing tracker lines for ellipse tracking. The

processing time depends on the number and width of the tracker lines. The method was tested

on a Pentium 350MHz PC. Tracking of one ellipse or ellipse segment with 30 tracker lines of

60 pixels width and with automatic handling of occlusion (see Experiments in 5.1) takes about
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Line 1 Line 2 Line 3

Line 4 Line 5 Line 6

Figure 6: Placing the tracking windows for lines. The small images to the right show the

warped windows (Line 1 to 6 of Fig. 4 from top left to bottom right). Windows for long lines

are sub-sampled in the line direction.

30 ms.

Figure 7: Placing the tracking windows for an ellipse: 30 tracker lines (the dark lines in the

image) are placed normal to the circumference of the ellipse. A tracker line is a row vector with

the vertical edgel representing a warped window of height one. The width of the windows can

be set and in the example is 60 pixels.
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4.2 EPIC

The aim of EPIC is to provide robust edgel matching by using region cues such as intensity, color

or texture in the regions adjacent to the edge. By using a rich variety of cues and integrating

them we achieve greater robustness than using classical edge magnitude cues alone.

The integration uses the model knowledge to select which side of the edge belongs to the

object and which side is background. EPIC attempts to �nd (track) edgels that exhibit the

most similar edge cue values as the last tracking step at the object side indicated by the model.

As long as object and background di�er in intensity (or color), the edgels describing the target

object are found and can be distinguished from background.

The rationale of using EPIC to match edgels is to reduce the number of edgels found in the

window to the \good" edgels, that is, the edgels that indicate with high likelihood the same

feature tracked in the last cycle. The result is a more robust �t of the feature geometry and an

increase in e�ectiveness leading to faster processing (refer to Section 4.3).

The EPIC procedure is as follows: the edge cue from the last tracking step is stored as

mean and standard deviation values. New edgels are found in each row of the tracking window

(see Fig. 8). For each interval between the edgels a new interval cue value is calculated. The

interval cue value ck is calculated from the maximum value of the histogram of the cue within

the interval k. Experiments with median values gave results of similar robustness, however, the

computations needed to calculate the median increase more than linearly with the number of

pixels.

The interval cue value ck;i is calculated for each cue, with i = 1; ::; number of cues. The

interval cue values found in the present tracking cycle ck;i are then used to �nd the weighted
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Figure 8: Example of determining the interval cue values for the intensity cue in the dashed row

of the tracking window (left) of Line 5 in Fig. 6. The gradient maxima determine the positions

of the k edgels. Between edgels a histogram technique is used to �nd the k + 1 interval cue

values.

cue values Ck;i as follows

Ck;i = exp

 
�
(�i � ck;i)

2�i

2
!

(1)

where the reference edge cue values from the last tracking cycle have been stored as the mean

value �i and the standard deviation value �i for the cues i.

Finally, for all edgels in a row (see Fig. 8) and for all rows in the warped window the

likelihood lk that the edgel k is a \good" edgel is evaluated to

lk =
1

W

nX
i=1

wleftCk;i + wrightCk+1;i (2)

with

W =
nX

i=1

wleft + wright (3)
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The index left and right of the above weights w refers to the two possible sides of an edgel

(refer to Fig.4). Knowledge of the model is used to select only the side that belongs to the target

object while the background is not regarded. If the model indicates an object, the respective

weight wleft=right is 1, otherwise it is 0. If the edge is a contour edge, the object can be only

on one side and the respective weight is set to one. In case an edge is the edge between two

visible surfaces of the object, then both weights are set to one.

As a result Eq. (2) calculates the likelihood of an edgel as the sum of the Gaussian weighted

cue values Ck;i depending on the ObjectSide given by the model. The advantage of this scheme

is that each value Ck;i is calculated using the Gaussian distance measure of Eq. (1), which

eliminates the need to set threshold parameters.

Using the result of feature detection, new values �i and �i are calculated from the ck;i

values of all the good edgels that voted for the �nally selected edge (please refer to the next

two Sections for details). As a result EPIC can adapt to varying re
ections along the edge and

to slowly varying lighting changes in the environment (see Experiments, Section 5).

Other cues than intensity, color, and texture have been tested [Zele98, ViBe01], for example,

the maximum gradient, the type of transition at the edge location, and the distance to the

previous edge location. However these cues did not improve robustness. In particular the

magnitude of the gradient provides no information about an edgel belonging to the object edge

and is not robust to background changes.

The EPIC scheme is very e�ective because the edge features contain attributes that give

indications to select the cues (intensity, color, texture, ...) of the object. Based on the lo-

calization of edgels, the cues can be easily integrated and the list of cues given above can be

easily increased with other cues. The principal idea is to use these cues to limit the selection of

19



edgels. For example, incorporating color added robustness in distinguishing the correct edges

from shadows and highlights [Zele98]. This limitation to good edgels renders the next step of

�tting the feature geometry to the edgels very eÆcient.

4.3 Fitting the Feature Geometry

In this step, the good edgels are used as input to a RANSAC voting scheme [FiBo81] to �t the

edgels to the feature geometry. The RANSAC idea is to randomly select a subset of suÆcient

size to estimate feature pose. The edge is re-projected into the window and the votes of all

edgels suÆciently close to the projected edge are counted.

In this work line and ellipse features are considered. For a line all good edgels in the warped

window are used. For the ellipse all good edgels found in all tracker lines are used. RANSAC

selects the features with the highest number of votes. Often several feature candidates have

similar high values (for example, Fig.9). In this case several feature candidates are retained

and the �nal selection will be performed in the validation step (Section 4.4). When the feature

is �nally selected unambiguously, the new feature pose and the new edge cue values (� and �)

for all cues are calculated for this feature and stored for use in EPIC in the next cycle.

Figure 9: The two line candidates found by �tting lines to the edgels selected with EPIC. The

line feature is Line 5 in Fig. 4.

The rationale of combining EPIC with the RANSAC scheme (or using a least median square
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line �t with a limited number of samples [1, ThRe01]) can be demonstrated when investigating

the likelihood of �nding the correct feature. A good feature is found if n good edgels are found

to support the feature geometry, where n = 2 for a line and n = 5 for an ellipse. If the likelihood

that an edgel is \good" is given by g, a good feature is found with likelihood gn. Repeating

the random selection of n edgels to de�ne an edge k times gives the likelihood of �nding the

correct edge l to

l = 1� (1� gn)k: (4)

This relationship depends strongly on g. Due to the higher power (g5) this e�ect is more pro-

nounced for ellipses than for lines. Therefore limiting the number of "good" edgels using EPIC

is extremely e�ective to reduce k (exponentially for the same l). The result is the capability

to �nd lines and ellipse arcs more robustly and at real-time (calculation times have been given

in Section 4.1.2). In summary, the overall computations to achieve a given likelihood in Eq. 4

are highly reduced when using EPIC to extract \good" edgels. The additional computations

required for EPIC need only a fraction of the savings.

4.4 Validation

EPIC and �tting feature geometry to the edgels diminishes the number of possible feature

candidates signi�cantly. Nevertheless, in many cases several feature candidates for one model

feature are found. Reasons can include a shadow, a cut or scratch on the object surface, a

chamfered edge or a similar background. In these cases a more restrictive edgel selection method

makes no sense since correct edgels would also be eliminated. The strategy is to express this

ambiguity with several potential candidate features, for example the two line candidates of the

warped window in Fig. 9.
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In this section a simple approach is described to use model knowledge for disambiguating the

multiple feature candidates. This ambiguity can not be resolved locally by regarding solely the

feature itself without any additional information. It is necessary to take more global knowledge

of the object into account to decide, which of the feature candidates is correct.

The idea is to check the plausibility of each of the feature candidates by using topological

relationships to other features (for example, lines and junctions) given by the object model.

This step is referred to as validation. Validation exploits two simple topological relationships

between edge features:

� Connectivity, for example, several lines intersecting at one junction, and

� Parallelism, for example, two parallel line features in the model.

The next two subsections will shortly outline how simple procedures can be implemented to

select the most likely con�guration of feature candidates.

The use of topological information is related to work in computer vision using the Gestalt

ideas (for example, [DiGr88, BoWe89, Lowe92, LeMe99]). The edge features are grouped using

the Gestalt properties and then these groupings are used for tracking or object recognition.

This bottom-up approach su�ers from the diÆculty to limit the combinatorial explosion of the

calculations. The approach taken here purposively chooses Gestalt criteria from the model of

the target object to disambiguate the data coming from feature detection. The computations

are limited to a few validation steps, which are processed in a fraction of the time needed for

EPIC and �tting of the geometry.
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4.4.1 Connectivity

The connectivity between edges is given through junctions which are extracted from the wire-

frame model. The model knowledge speci�es the edges, which intersect at one junction. The

intersection delivers the new 2D-position for this junction without tracking the junction itself.

The validation procedure for connectivity at junctions is as follows. Figure 10 gives an

example, where connectedness is used to disambiguate the two feature candidates of Line 5 in

Fig. 4. It is tested if the end of the edges actually extends to the calculated 2D junction position.

This is done by examining if at least one edgel lies on the edge next to the newly calculated

junction position. This veri�cation step is applied to all combinations of edge candidates. The

one combination of candidates that receives the best evaluation wins. A junction votes for the

respective edge candidates.

The validation steps to evaluate correct connectedness at one junction can therefore be

summarized as follows:

1. Select one candidate of each edge connected to a junction.

2. The selected edge candidates are intersected and the 2D intersection point is calculated.

3. The endpoints of the edge candidates are examined: A window is warped perpendicular

to the edge a few pixels away from the calculated 2D intersection point and edgel �nding

is performed.

4. Steps 1-3 are repeated until all combinations of edge candidates are tested.

5. The best set of edge candidates is voted for.
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Figure 10: Validation using the connectedness criteria of lines at junctions. The small rectan-

gular validation windows (displayed in white) indicate the image areas where the continuation

of the edge towards the junction is calculated. The dark crosses within these windows show

the edgels found in these validation windows. The bottom Line 5 (refer to Fig. 4) has two

candidates, 5a and 5b. Therefore there are two potential intersections with Line 6, junction A

and B. Junction B with the lower horizontal line candidate cannot be veri�ed (there is no edgel

in the validation window above B) and therefore the feature candidate 5b is rejected. Fig. 9

shows the warped image of Line 5 with the two candidate lines.

4.4.2 Parallelism

The constraint of parallel edge features in the model is exploited by a similar procedure. Of

particular interest are line features. From the model of the object a pair of parallel lines is

extracted, which projects to nearly parallel lines in the image. The validation of parallel edge

candidates in the image uses two criteria in relation to the expected values: (1) the di�erence

in the orientations of two candidates and (2) the normal distance from a line center to the other
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line. The expected angle and distance are extracted from the projection of the edge features in

the image.

The validation of parallel edges is of particular importance, if the edges appear close to

each other in the image. For example, two parallel lines close to each other will appear in the

tracking windows of both features (see Fig. 11). Disambiguation in each individual tracking

window is diÆcult at this level. One solution could be to eliminate one of the edges from the

model. But this solution leads to decreased accuracy in pose calculation since the redundancy

of features is diminished and the danger of \jumping features" (since there are two similar edges

in the tracking window it can happen that tracking switches between the two possibilities) is

increased. Hence a validation of parallel edges is a very e�ective means to avoid such diÆculties.

The steps to validate parallel edge candidates are summarized below.

1. A pair of parallel edge candidates is selected from the model.

2. The parallelism constraint of edge candidates is examined by comparing the di�erence

between the angles of the candidates to the expected values. The normal distance between

the parallel edges is projected into the image and compared to the distance measured in

the image. Fig. 11 gives an example of three parallel lines, which are disambiguated using

the parallelism constraint three times.

3. Steps 1-2 are repeated until all pairs of parallel edge candidates are tested.

4. Vote for the pair of candidates that best ful�lls the constraint.

Very often one edge has several relationships (connectedness and parallelism) to other fea-

tures that are validated. For example, one line has two junctions (one at each end) connected

to other edges and can at the same time be parallel to another line. All these relationships are
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Figure 11: Validating parallel line features. The left image shows an example of three parallel

lines as part of the experiment in Fig. 16. Three parallelism constraints are established between

Line 1 and Line 2, between Line 2 and Line 3, and between Line 1 and Line 3. Validation

successfully disambiguates the line candidates given in the small tracking windows to the right.

Line 2 in the image is found as candidate 1b, 2b, and 3a in all images, but �nally it is only

matched correctly to Line 2. The tracking windows have been turned 90 degrees to correspond

to the line orientation in the original image.

evaluated and votes for the involved edge candidates are determined. To handle these votes

coming from di�erent constraints, a simple majority voting scheme is established, which leads

to the selection of the topologically best �tting edge candidates. The experiment in Section 5.2

will show the value of validation in a realistic experiment.

5 Experiments

The capability of V4R and the EPIC and validation methods are shown in three experiments.

First, the capability of EPIC is highlighted in ellipse tracking. The use of EPIC is the main

factor to enable tracking of real-world objects over cluttered background and with lighting and

re
ection changes. Second, EPIC and validation are used for navigating a walking robot into a
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Figure 12: Tracking a lamp shade using only gradient information.

ship section and, �nally, to navigate a mobile robot in an indoor environment. The validation

step adds additional robustness and uses features such as parallel lines as signi�cant object

indicators instead of eliminating double lines [NaMu00].

The following section presents sample images of the tracking sequences. The multimedia

Extensions show results as video sequences which are color coded to show intermediate tracking

results.

5.1 Tracking Ellipses

The experiments are conducted using the intensity component of color images processed at

frame rate. To demonstrate the capability of the EPIC approach, a lamp shade is tracked using

only gradient information and then using EPIC to �nd the edgels for ellipse �tting (Extension

1). Fig. 12 shows examples from this sequence using only gradient information. The background

clutter soon produces strong edges that distract the line trackers along the circumference and

tracking fails.

Fig. 13 and Extension 2 demonstrate the tracking of the same lamp shade using EPIC to

�nd the edgels on the tracker lines. During the sequence the slim head of the lamp occludes

part of the rim of the lamp shade. The occluded segment is not tracked. If the ellipse tracker
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detects several neighboring tracker lines that cannot �nd the ellipse detected by the other line

trackers, the ellipse is broken up. The tracker lines are equally distributed along the remaining

circumference of the ellipse. At each end of the ellipse segment one tracker line is added to

detect the recovery from the occlusion [BiVi01]. Ellipse arcs with a subtended angle less than

180 degrees are diÆcult to track, since ellipse �tting becomes unstable [FiPi99].

Fig. 14 and Extension 3 show the tracking of an ellipse segment over cluttered background

and with signi�cant changes of the re
ectivity of the tracked object, which are both handled

by EPIC.

The ellipse tracker is an integral part of the model-based tracking tool V4R. Using the

ellipse information in the image, the 3D center point of the model circle and the surface normal

of the ellipse plane are reconstructed. This information is then used to estimate the pose of the

Figure 13: Tracking of the lamp shade using EPIC. The tracker lines are placed along the

visible contour detected in the previous tracking cycle. At both ends one tracker line is placed

beyond the end to enable adaptation to changes in occlusion or orientation of the ellipse arc.
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Figure 14: Samples of tracking an ellipse arc over cluttered background and with substantial

changes of re
ectivity.

object together with the information of line and junction features (see Extension 4). Figure 15

gives samples from the sequence of tracking a monitor base. The estimated pose is re-projected

into the image for better evaluation of the result obtained.

5.2 RobVision - Navigating a Walking Robot into a Ship Body

As part of the Esprit project RobVision (ROBust VIsion for Sensing in Industrial Operations

and Needs) a system has been developed to navigate a walking robot through a ship section for

inspection and welding tasks. In this project robust behavior has been improved by integrating

the features of two di�erent vision methods, one measuring 3D junctions with the stereo head

(Pronto), the second tracking edge and junction features in a single image (V4R). Pronto was

developed by the Lab for Integrated Advanced Robotics of the University of Genoa. The real-

time capability is important to reach an acceptable performance of the overall system. In this

29



Figure 15: Tracking the base of a monitor using ellipse and lines. The pose estimated from the

lines and the ellipse is re-projected into the image.

project both vision systems need to work on the same image. This is solved by transmitting

the image from Pronto to V4R. With the additional communication overhead to exchange the

features and estimated poses, a pose update cycle time of 120ms is achieved. The communi-

cation strategy followed Figure 2 with the additional vision system Pronto working in parallel

to V4R, where V4R �nally estimates the pose using the image features found by both vision

systems.

As seen in Figure 16 a mock-up of a ship section | a typical test environment | was built

by Odense Steel Shipyard Ltd. (OSS), the end user of this project, with structures that can

be found in a big ship environment. Several trajectories were examined to test the robustness

of the system and its accuracy. The mock-up is made of large metal plates welded together.

Figure 17 shows an example of a camera view. The CAD system developed by the Department

of Production of the Aalborg University (AAU) provides the features seen in Figure 17(a) and
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Figure 16: Model of the mockup and the trolley with the stereo head looking at one view point.

(a) (b) (c)
Figure 17: (a) View with features generated by the CAD subsystem, (b) 3D junctions detected

by the stereo vision subsystem, (c) lines in their searching windows tracked by V4R.

delivers them to the vision systems Pronto and V4R. The Pronto stereo vision system is able

to extract the 3D coordinates of the junctions (Figure 17(b)) and V4R extracts the 2D position

of edges and junctions in the image (Figure 17(c)).

The diÆculty of the ship environment is that some welding causes irregular edge features,

contrast is generally poor and additional features on the plate surfaces can adversely a�ect

feature �nding and pose calculation. Within RobVision the capacity of two vision systems

(Pronto and V4R) is used to extract redundant features from the images. All features extracted

by these two vision systems are used to estimate the robot pose in V4R. See [ViBe01] for more

details about this project.
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Extension 5 shows the tracking performance from the walking robot. Fig. 18 shows samples

of the images captured along a path inside the mockup. The robot starts in front of the T-truss

and moves about 1 meter ahead. To visualize the �nal tracking result, the model is re-projected

into the image displaying the new calculated pose.

Figure 18: Tracking the mockup from a walking robot using EPIC and validation. The three

parallel lines in the bottom front can be easily distinguished.

The value of validating lines is seen by comparing the tracking performance in Fig. 18 shows

samples of the images captured along a path inside the mockup. The robot starts in front of

the T-truss and moves about 1 meter ahead. To visualize the �nal tracking result, the model

is re-projected into the image displaying the new calculated pose. with Fig. 19. While the

parallel lines in the bottom front are nicely disambiguated in Fig. 18, tracking is confused and

lines are placed on top of each other in Fig. 19.

Fig. 20 gives the pose recorded along the path of the sequence in Extension 5 (Fig. 18). It can

be observed that the pneumatic walking robot produces many jerks. Especially fast changes in
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Figure 19: Tracking the mockup from a walking robot using EPIC without validation. The three

parallel lines in the bottom front appear as only one or two tracked lines and correspondence

changes between frames.

the orientation of the robot cause big deviations of the feature positions in the image. Because

of the spatially restricted window size, these rapid deviations cannot be tracked and the features

are lost. Larger windows would need longer calculation time and therefore not eliminate this

problem [ViWe97]. This loss of features reduces the reliability of the system. Therefore a

head stabilization has been implemented, which detects the body motion using accelerometers

and which can be taken into account when placing the windows, and the robustness of feature

�nding is regained.

In Figure 21 the motion of a trolley is compared to the motion of the robot. The smoother

motion of the trolley results in a smoother robot trajectory.

The tests executed show that the system bene�ts from the redundancies implemented. As

long as suÆcient features can be tracked, the system is able to re-�nd lost features. Additionally,
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Figure 20: Robot pose vs. the frame number along a trajectory: (a) 3D position in [m] and (b)

3D orientation using RPY angles in [rad].
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Figure 21: Projection of (a) walking robot poses (b) trolley poses along a trajectory into the

x/y plane.
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incorrectly detected features are �ltered out in the pose calculation step. An example of tracking

sparse line features (�ve instead of the minimally required three line features) gives Figure 22

and Extension 6. Tracking is not as robust as compared to using many redundant features.

The stabilization of the pose is further increased by using 3D features and by the continuous

update of new image features from the CAD system, when moving over longer trajectories.

The case of sparse features also pro�ted from using accelerometers to stabilize the camera.

Figure 22: Examples of tracking from a walking robot in a part of the mockup with only 5

visible edges.

To summarize, in the experiments the walking robot could be controlled at its top speed

of 3 cm/s. Tracking using EPIC and validation proved to be robust in an environment with

all walls of the same color. The integration of redundant features proved feasible. Within the

mockup the robot was located with an accuracy of better than 5 cm, which is suÆcient to ful�ll

the task and place the welding equipment.

5.3 Mobile Robot Navigation

To obtain experience in the prospective scenario of a service robot, the camera is mounted on

a mobile robot which should navigate in an oÆce environment. A CAD model of the oÆce is

generated and some primitive tasks are de�ned. Figure 23 and Extension 7 show the result of

35



the vision process where the robot is moving about two meters. The model is re-projected as

in Figure 18.

Figure 23: Tracking in an oÆce environment from a walking robot. The pose estimated from

the lines is re-projected into the image.

Figure 24 shows the pose estimates for the path of the robot in the x/y plane. The robot

used is a Pioneer 2 DX with three wheels. Therefore the motion on even ground is smooth, the

image motion is smooth and the system performs reliably.
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Figure 24: Projection of the robot path moved into the ground plane.

The tests indicate the same conclusions as the RobVision project (see section 5.2). Large
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image deviations caused by high angular velocities are diÆcult to track. To increase the relia-

bility of the whole sensor-robot system the camera will be mounted on a camera head, which

is able to compensate most of the turning motion [CrVi00].

6 Summary and Future Work

This paper has presented the V4R framework for model-based visual servoing for robotic ap-

plications. The system is simple to use and performs robustly as demonstrated in three sets

of experiments. A particular feature of V4R is the technique of Edge Projected Integration of

Cues (EPIC), which provides signi�cant robustness in extracting edge features such as lines and

ellipse arcs. This robustness is obtained by making extensive use of model knowledge. EPIC

uses knowledge of edge-background adjacency to separate the object from the background. In

a �nal feature validation step, the topology of the features in the object model is exploited to

select the best set of features among the possible candidates. The result is a framework which

can be used in realistic environments. For interested researchers, the authors can provide the

source code of V4R.

One limitation of visual tracking is the maximum bound on target velocity (and accelera-

tion). The work in the RobVision project showed that the integration of accelerometers (gyros)

improves tracking by stabilizing the camera and by improving the pose estimate of the camera.

The rationale is that accelerometers can track fast motions, while slow motion is tracked more

accurately using vision. It will be future work to integrate a full 6D accelerometer head with

the visual tracking system. Due to the modularity of the system, the integration with other

sensors will be easy to implement. Another advantage of this approach is in handling cases

where only a few features are visible, for example close to a wall.
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Future work is needed to realize the full potential of the validation technique. Presently only

part of the model knowledge is exploited. Other Gestalt properties, for example, the region and

bounding polygon information provided by a wire-frame model, will be incorporated to further

improve validation and robustness.

Finally, the initialization requires that the start pose is set or features are selected manually.

Object recognition methods can solve this problem, however they often require substantial

computing time and perform poorly with clutter and in uncontrolled lighting situations. It

is again proposed to utilize the model knowledge to focus the recognition processes so as to

enable the rapid �nding of the target object and therefore the fast initialization for the tracking

process. Such a technique is also necessary to enhance error recovery and to enable fault tolerant

behaviors.
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7 Appendix 1: Index to Multi-Media Extensions

The multi-media extensions to this article can be found online by following the hyperlinks from

www.ijrr.org.
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Extension Media type Description

1 Video Tracking a lamp shade (a full ellipse) using only gradient

information.

2 Video Tracking a lamp shade using EPIC. Cluttered back-

ground, re
ectivity changes and partial occlusion are

handled.

3 Video Tracking an ellipse arc over cluttered background and

with substantial changes of re
ectivity.

4 Video Tracking the base of a monitor using ellipse and lines

for pose estimation.

5 Video Tracking a ship mockup from a pneumatically actuated

walking robot.

6 Video DiÆculty of tracking a section of the mockup with only

5 visible edges.

7 Video Tracking in an oÆce environment from a mobile robot.

Table 1: Index table of Extensions.
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