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Abstract

In this position paper we propose behaviour learning and recognition
techniques to be used in advanced vision applications. Bayesian Belief
Networks (Bayes nets) have been developed for cognitive vision and sup-
port information integration and representation of contextual constraints.
They also work well with the task-based control proposed for ActIPret
using DDNs. Radial Basis Function Networks (RBF nets) have also been
developed for more reactive vision tasks and work well for fast learning
and classification. We propose a combination of these two approaches
for event, action and activity learning and representation. In addition,
specific extensions of our existing work to allow more general 3D activ-
ity analysis in the ‘attentive’ processing are: 1) ‘modular’ Bayes nets for
multi-agent learning and recognition (‘agent’ is movable person/object);
2) development of the new interface with task control policies (specifically
the evaluation criteria); 3) action-based representation in a hand frame-
of-reference; and 4) more general ‘parsing’ of activity plans in the later
stages of the project. For ‘pre-attentive’ processing, proposed extension is
to adapt the time-delay RBF net scheme to use 3D trajectory information
in gesture recognition and other primitive visual operators used to cue full
attentional processing.

1 Introduction

Research issues to be addressed in building cognitive vision systems centre on
the role of context, control and learning. Four major approaches are 1) logic-
based approaches, 2) graph-based models, 3) deformable models and 4) neural
networks. Of these, it is primarily approaches 2-4 that have associated learning
theory, usually based on statistical techniques of some kind. By now it is clear
that in ActIPret, it is best to have learnt representations so that our systems can
scale up. It has also been proposed that some global, less controlled processing
(pre-attentive) establishes a set of candidate objects and predicitive action cues



in the system before committing resources to full ‘attentional’ processing in the
online system. Finally, it has been proposed that ActIPret requires primarily 3D
vision. Thus, this position paper first introduces general visual learning, then
proposals for task and behaviour learning at the ‘attentive’ and ‘pre-attentive’
levels. It also discusses extensions to existing work to deal with the specific
requirements of the ActIPret system.

Learning in a vision system can be at the level of object models, their move-
ments and actions, and how to control views and processing in the system. Our
work on appearance-based approaches (using RBF nets) suggests they are more
learnable and robust than structural approaches for general object categorisa-
tion on real-world tasks such as face recognition [23, 25]. Natural deformable
objects are difficult to specify and so are their movements and actions, so adap-
tive methods are required. At the heart of a visual learning system is the ability
to find the relevant mapping from observable or derivable attributes of image(s)
onto the visual categories we require for real-world tasks. In the proposal below,
we show how appearance-based techniques can be extended to gesture recogni-
tion in ActIPret.

In addition to object and behaviour recognition, expected behaviour can
be used to control further processing in the system through prediction. Many
different learning and prediction techniques have been proposed. For example,
symbolic learning using case-based reasoning [12], graphical models for proba-
bilistic reasoning and control [18, 38], stochastic models for learning and predic-
tion in tracking [5], deformable models for event analysis [2, 31], neural network
learning in gesture recognition [24]. We will examine these recent developments
in more detail in the next section and propose future extensions for ActIPret.

2 Proposal

2.1 Cognitive recognition and synthesis

Probabilistic frameworks have much to offer in dealing with the pervasive prob-
lem of uncertainty in visual evidence, and support information integration and
learning as discussed by Pearl [32]. The representation of constraints in a
Bayesian Belief Network, ‘Bayes net’, can be achieved by mapping into the
structure of a Directed Acyclic Graph (DAG) so that the nodes represent con-
cepts of interest and dependencies are given by causal links. A simpler chained
structure with single causal dependencies over time, the Hidden Markov Model
(HMM), is often used for speech analysis [36] and has been extensively adapted
for analysis of dynamic scenes and perceptual control as described below. In
probabilistic reasoning [9], the likelihood of classes of objects or events is inferred
by propagation of belief values in the light of changing evidence. Dempster-
Shafer theory has also been used to handle uncertainty in vision [3] but this
approach is generally more computationally complex in the online evaluation.
Bayes nets have been widely adopted in vision systems as they are applica-
ble to all levels of processing due to fast numerical updating in singly connected



trees. There are techniques to decompose complex models and handle networks
with multiple causes as well as learn the parameters for such networks [40].
Rimey and Brown introduced such techniques for active vision, with both con-
trol of camera movement and the selective processing required in task-based
perceptual control [37, 38]. As discussed by Gong and Buxton [18], Bayes nets
provide a clear way to map contextual constraints from the scene onto the com-
putation of the visual interpretation by combining known causal dependencies
with estimated statistical knowledge. They are essentially providing closed-
loop control using both top-down and bottom-up messages in the propagation
of belief values. They also provide the possibility of learning and refining vi-
sual representations by observation [8, 41]. Bayes nets have been used in many
demanding applications such as BATmobile [13] and TEA system [38].

HMMs are also widely used in visual processing. The advantage here is
that the “hidden” purposes of regular behaviour patterns can be learnt from
examples, 1.e. the structure of the model as well as the parameters are easily
learnt [36]. For example, in early work by Gong [17, 16] the movement patterns
of vehicles on an airport ground-plane were learnt to provide a model used in
prediction. More recent work uses parameterised HMMs for gesture interpreta-
tion [6], coupled HMMs to learn models for interactions [7], and variable length
HMMs for virtual reality systems [14].

For the cognitive level behaviour integration then, it seems that HMMs and
Bayes nets have much to offer in the ‘attentional’ processing. We can extend
existing work by:

e First, exploiting ideas from Nevatia’s group who have used a Bayesian
approach to develop efficient, modular multi-agent event recognition [19,
20]. However, we would not use agent- based ‘threads’ as they suggest
but rather retain our ‘situated vision’ visual index approach [21, 22]. This
involves close interaction with deictic relationships derived in WP3.

e Second, the modular approach to event/activity recognition will require
extensions to the interface with task-based control in the evaluation loop
that selects and schedules visual operations and confirms/rejects the hy-
potheses concerning current behaviour in WP1.

e Third, as I emphasised in the kick-off meeting, the approach to behaviour
modelling needs to be generalised for action-based representations. While
traffic analysis can take place on a ground-plane, 3D activities in ActIPret
require representation and reasoning in the hand frame-of-reference.

e Fourth, when there are multiple, valid Activity Plans, a more general
reactive planning or ‘parsing’ mechanism will be required in the task-
control policies during behaviour recognition.

2.2 Detection and early behaviour cues

Neural network techniques are a powerful, general approach to pattern recogni-
tion tasks and there are a variety of different methods (for an introduction see



[4]). The classical networks do not include a time dimension so they have to
be adapted to deal with dynamic scene analysis. Some extended models have
internal time like the partially recurrent networks of Elman [11] and Jordan [28].
Others have external time like the time-delay networks described below. Time
can be explicitly represented in the architecture at the network level using the
connections or can be represented at the neuron level, including the recently
developed ‘spiking networks’. These model the intrinsic temporal properties of
biological neurons, which fire with a pattern of pulses or spikes. The most com-
mon new generation dynamic network of this kind is the ‘integrate-and-fire’ (TF)
network (for review see [15]). However, they have yet to be applied in visual
behaviour analysis as there is still ongoing debate about how best to propagate
information (the ‘coding problem’) in these models. An important exception is
the extension based on classical Radial Basis Functions (RBFs).

The RBF net is a two-layer, hybrid learning network [29, 30], which combines
a supervised layer from the hidden to the output units with an unsupervised
layer from the input to the hidden units. The network model is characterised
by individual radial Gaussian functions for each hidden unit, which simulate
the effect of overlapping and locally tuned receptive fields. It is characterised
by computational simplicity, supported by well-developed mathematical theory,
and robust generalisation, powerful enough for real-time, real-life tasks [35, 39].
The nonlinear decision boundaries of RBF nets make better general function ap-
proximations than the hyperplanes created by the multi-layer perceptron (MLP)
with sigmoid units [33], and they provide a guaranteed, globally optimal solu-
tion via simple, linear optimisation. One advantage of the RBF net, compared
to the MLP, is that it gives low false-positive rates in classification problems as
it will not extrapolate beyond its learnt example set. This is because its ba-
sis functions cover only small localised regions, unlike sigmoidal basis functions
which are nonzero over an arbitrarily large region of the input space. RBF nets
are also fairly robust to partial occlusions [1].

Once training examples have been collected as input-output pairs, with the
target class attached to each image, tasks can be learnt directly by the system.
This type of supervised learning can be seen in mathematical terms as approx-
imating a multivariate function, so that estimations of function values can be
made for previously unseen test data where actual values are not known. This
process can be undertaken by the RBF net using a linear combination of ba-
sis functions, one for every training example, because of the smoothness of the
manifold formed by the example views of objects in a space of all possible views
of that object [34]. This underlies successful previous work with RBF nets for
face recognition from video sequences [25], which uses an RBF unit for each
training example, and rapid pseudo-inverse calculation of weights. An impor-
tant factor in this approach is the flexibility of the RBF net learning approach,
which allows formulation of the training in terms of the specific classes of data
to be distinguished. For example, extraction of identity, head pose and expres-
sion information can be performed separately on the same face training data to
learn a computationally cheap RBF classifier for each separate recognition task
[10, 26]. Essentially, these adaptive methods allow key inferences to be made



within the system by modeling the variability of the evidence.

To extend this research to support Visually Mediated Interaction (VMI),
person-specific and generic gesture models were developed for the control of
active cameras. A time-delay variant of the Radial Basis Function (TDRBF)
net recognised pointing and waving hand gestures in image sequences [24, 27].
A gesture database was developed as a source of suitable image sequences for
these experiments. Characteristic visual evidence 1s automatically selected dur-
ing the adaptive learning phase, depending on the task demands. A set of
interaction-relevant gestures were modeled and exploited for reactive on-line vi-
sual control. These were then interpreted as user intentions for live control of
an active camera with adaptive view direction and attentional focus. For Ac-
tIPret, some of the ideas for zooming in on activities can still be exploited. Also
the gesture recognition is an excellent predictive cue for many of the actions
and activities in our ActIPret scenarios. At the earlier levels of processing, but
particularly in the gesture recognition, reactive behaviour is important for both
camera movement and invoking further ‘attentional’ processing. The current
scheme is entirely ‘appearance-based’ using RBF unit ‘prototypes’ that deliver
a confidence measure of how likely new data fits this unit’s learnt function.
These first layer outputs are combined in task-specific ways to deliver classes
or drive camera views. Thus, specific extensions for ActIPret are: 1) adapt
the TDRBF net scheme to accept 3D hand trajectories for predictive gesture
recognition (or possibly a multi-view appearance-based scheme but this requires
training data from a set of viewpoints). The gesture recognition can use pre-
and mid-gesture phase detectors as in our previous work on predictive control
and requires interfaces to the visual index mechanism of WP1 to know which
trajectory corresponds to the hand (WP4 delivers this); 2) extend the gesture
scheme for two hands under WP5 (although the multi-hypotheses are likely to
be handled better by ‘attentive’ Bayes net); and 3) with partners decide at which
level to drive ‘attentional’ camera movements (WP6) as it may be appropriate
to drive this as an early reactive behaviour.

3 Conclusion

I hope this position paper clarifies aspects of the approach, but not the detail,
for the Task and Behaviour WP} learning and recognition in ActIPret. Please
comment urgently as it is crucial for the planned work of Jon Howell in the
COGS team. We have a great deal of work to do here and need to have a
working framework with at least primitive gesture recognition and isolated ac-
tivity recognition in place by end of year 1. We propose to schedule work on
TDRBF gesture recognition as soon as 3D hand trajectories are available from
FORTH (interaction with WP4) and agree an initial position on camera control
with PROFACTOR (interaction with WP6) asap. We also propose to start
immediately on the work on modular Bayes nets for simple event and activity
recognition (interaction with deictic relationships WP3). This will then allow
us to confirm completed actions for synthesis of the Activity Plan in the expert



mode.

The work on extensions to the interface with WP1 in the task-control policies
in evaluation confirming or rejecting behaviour hypotheses must also exist in an
initial version by the end of year 1. Also, the representation scheme for the
hand-based activities is fundamental to learning and recognising activities so
must be taken as a starting point for WP5 work at the cognitive levels. Finally,
later in year 2/3 we can extend this work to allow a more complete set of
valid Activity Plans in a flexible, learning and interpretation scheme. This will
involve multiple hypotheses in some kind of Bayesian framework, or possibly
Finite State (FS) machine, to ‘parse’ the ongoing interactions in the dynamic
scene, similar to natural language analysis. Also, in year 3, we can extend the
gesture and primitive operator set for a wider class of predictive cues using 2
hands.

I have suggested extensions required in WP5 and their interactions with
other WPs, especially Cognitive Framework WP1 and Deictic Spatial and Tem-
poral Relationships WP3. In addition, we still have much work in thinking out
the interaction with Attentive and Investigative Behaviours WP6. We also note
that WP3 itself interacts strongly with WP2 and WP4 on object recognition
and tracking at the cognitive levels to derive the relevant spatial and temporal
relationships for behaviour analysis on which WP5 depends.
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