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Abstract

In this paper we introduce adaptive vision techniques
used, for example, in video-conferencing applications. Ra-
dial Basis Function (RBF) networks have been trained
for gesture-based communication with colour/motion cues
to direct face detection and capture ‘attentional frames’.
These focus the processing for Visually Mediated Interac-
tion via an appearance-based approach with Gabor filter
coefficients used as input to time-delay RBF networks. We
use these methods for behaviour (user-camera) coordina-
tion in an integrated system.

1. Introduction

Visually Mediated Interaction (VMI) facilitates interac-
tion between people using visual cues similar to those used
in everyday communication. The aim is to overcome limi-
tations due to, for example, distance or disability. This in-
volves many visual competences such as recognising facial
expression, gaze, gesture and body posture which are all
used in human interaction. Gestures are often spontaneous
but can also be intentional, where we can distinguish be-
tween verbal (sign languages) and nonverbal (pointing, em-
phasis, illustration). In our work here we are mainly con-
cerned with intentional, nonverbal gestures which are rel-
evant for VMI. Also, we use gaze which provides an im-
portant cue for discourse/interaction management. In par-
ticular, gaze direction is associated with attention-directing
pointing to indicate objects or people of interest in the
scene.

Robust tracking of non-rigid objects such as human faces
and bodies involved in machine analysis of this kind of in-
teractive activity is difficult due to rapid motion, occlusion
and ambiguities in segmentation and model selection. This
is addressed by the move to active vision and dynamic mod-
els, e.g. learning to track complex hand dynamics [15].
More generally, research funded by British Telecom (BT)
on Smart Rooms[20] at MIT Media Lab has shown progress
in the modelling and interpretation of human body activ-
ity, e.g. the Pfinder(Person Finder) system [26]. This can
provide real-time human body analysis with further work

to model the progression of ongoing activity using tech-
niques such as Hidden Markov Models(HMMs), which
can be parameterised to provide information such as direc-
tion of pointing [25]. Further analysis for VMI can even
involve coupled human interaction analysis using learning
techniques based on deformable models [18].

Other recent related research using computationally sim-
ple view-based approaches to action recognition have been
introduced by Bobick [2]. Pinhanez and Bobick [21] have
developed a PNF network approach using the temporal
terms (past, now, fut)for human action detection, which al-
lows fast performance compared to equivalent evaluations
of Allen’s interval logic. Similar approaches at Microsoft
Research by Turk and Cutler [7, 24] have also yielded useful
results. In Pentland’s group, much progress has been made
in the detailed modelling and interpretation of human body
activity [27]. We also have coupled HMMs [3] for under-
standing behaviour interactions and parameterised HMMs
[1]. More recent work [19] has developed reliable Bayesian
vision systems. Two further developments are: 1) work
by Galata, Johnson and Hogg using hybrid deformable and
HMM behaviour models for virtual actors [9]; and 2) the
action-reaction learning of Jebara and Pentland [16].

We have concentrated on developing computationally
simple view-based approaches to action recognition, which
address the task of using intention in behaviour modelling
to directly drive VMI. In robotics, Brooks [4] emphasises
the need to have this kind of perceptual grounding for be-
haviour, going directly from perception to action. In cog-
nitive science (review [5, pp. 311–374]), we also find that
recognition of behaviour is possible with minimal percep-
tual information, e.g. Johansson’s point-light technique al-
lows us to recognise human movement [17]. Even animated
sequences of simple geometrical shapes are interpreted us-
ing intentional descriptions [23].This suggests that human
visual cognition has direct methods that are learnt for be-
haviour interpretation and control. We can mimic these
characteristics in subsymbolic approaches using neural net-
works. Our proposal, then, is to directly associate an atten-
tion seeking pragmatic interpretation with waving gestures
and zoom in on the user. This idea generalises to directional
semantics for pointing gestures for intentional tracking in



the design of our system.
The background research here is our view-based learning

techniques for face recognition real-time, of a known group
of people within indoor environments [13]. A key capa-
bility was to identify faces over a range of head poses and
our approach exploited the flexibility of the example-based
Radial Basis Function(RBF) network learning approach,
which allowed us to reformulate the training in terms of the
specific classes of data we wished to distinguish. For exam-
ple, we could categorise head pose or expression informa-
tion separately from identity by training RBF classifiers for
each separate task [8]. Similarly, our approach to gesture
recognition uses time-delay variants of RBF networks [12].
Essentially, these adaptive methods allow us to make key
inferences within our system by modelling the variability
of the evidence.

2. Capturing the Attentional Frame

Our techniques here use colour/motion cues from the im-
age sequence to identify and track the head. Once we know
the position and size of the head, we define an attentional
frame around the person. The attentional frame is a 2-D
area around the focal user that contains all the body move-
ment information relevant to our application, which is all
movement of the head and right arm. To allow people to
move closer or further away from the camera, this informa-
tion is normalised for size (relative to head size) around an
arbitrary standard position from the camera.

Our main priority is to find real-time solutionsfor the
application. Therefore, we use two computationally cheap
pixel-wise processing techniques on our image: thresholded
frame differencing, giving motion information, and Gaus-
sian mixture models, giving skin colour information. These
are combined to give a binary map of moving skin pixels
within the image, and we use local histogram maxima to
identify potential ‘blob’ regions. A box, which is large
enough to contain the head at all distances in our target
range, is fitted over the centroid of each of these regions.
Fig. 1(a) shows how each box is centred on the centroid of
each maximum, with the inner lines showing the standard
deviation of the pixels along the x-axis from that centroid.
It can also be seen that the hands are ignored in this exam-
ple, as they are too low down to be included in a face-size
‘blob’.

A robust approach to head tracking using colour/motion
blobs is what we call temporal matching: the tracker only
considers blobs from the current frame which have been
matched to nearby blobs from previous frames. This ex-
cludes any anomalous blobs that appear for one frame only
in an image sequence, and promotes those that exhibit the
greatest temporal coherence. Having found the position
and size of the head, we extract the attentional frame from
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Figure 1. Colour/motion cues position an at-
tentional frame around a person: (a) a box
is centred around each colour/motion ‘blob’,
(b) an ‘attentional frame’ is drawn around the
person relative to the head.

around the person.

3. Pose-Invariant Face Detection

The previous section described how we isolated small
areas of moving skin-tones from the overall image. This re-
duces computation and network size, by allowing the face
detector to work only within a small subset of the full spec-
trum of possible objects typically encountered in an office
environment. Specifically, we consider the restricted form
of face detection where we need to distinguish a face only
from other moving skin-tone blobs (typically hands).

In order to perform effective face recognition, we need
to identify the position of the central face area (eyes, nose,
mouth), rather than the entire skin area on the head (which
also includes forehead, neck, ears, etc). Our face detec-
tion task, therefore, is to distinguish centred faces from both
non-centred faces and other moving skin-tone blobs. We
train RBF networks with examples of both to provide a con-
tinuous ‘face/non-face’ output, with a level of confidence
based on the difference between the two output values from
the network [11]. This level of confidence allows discarding
of low-confidence results where data is noisy or ambiguous.

Our training examples take variable head-pose into ac-
count, so the central face region of a person can be recog-
nised at all normal physiological pose positions. Fa-
cial information is only visible on a human head from
(roughly) the front �120Æ of x- and y-axis movement, and
z-axis movement is physiologically constrained to around
�20Æ (when standing or sitting). The face region is cen-
tralised on the nose, rather than the face, for all profiles,
as this allows non-occluded face information to remain
roughly in the same position, see Fig. 2(a). This has pre-
viously been shown to more useful for pose-varying face
recognition we then easily determine a coarse estimate of
head-pose, such as left, frontal or right, from the output
grid. This qualitative level of head-pose is very useful for
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Figure 2. (a) Two methods for segmenting
25�25 pose-varying face data, (b) the grid
system for detecting potential faces within a
potential ‘head blob’ region of the image.
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Figure 3. A block diagram outlining the inte-
grated system (from [14]).

our group interaction analysis [22]. The ‘non-face’ class is
taken from a larger grid to encourage face detection only
where the image was accurately aligned on the face, such
as within the dotted lines in Fig. 2(b), and from around
the centroids of ‘distractor’ moving skin/colour regions, e.g.
hands, within each frame.

4. The Integrated System

The design for the complete integrated system is seen
in Fig. 3, where the input from the active camera is first
processed to detect heads and position attentional frames,
then face, gesture and pose classification, followed by the
interpretation of group interaction.

A complete video-conferencing active camera control
system requires high-level interpretation of group and in-
dividual interaction [22]. As we have seen, we propose a
system for behavioural control, whereby gesture and head
pose information, contained in a ‘scene vector’, is provided
for this interpretation to take place. This allows the system
to provide camera control information via a learnt mapping

onto a ‘camera control vector’ representation. The scene
vector provides head-pose and gesture probabilities for the
people in the field of view, and the camera control vector
determines the focus of attention in terms of which users
are included in the processed scene. If individuated con-
trol of the system is required, then we need to identify who
these people are (from a small known group), as shown in
Fig. 3. Two extra stages, therefore, are needed: gesture and
(pose invariant) identity recognition. Practical techniques
for tackling these tasks in real-time, using the RBF and
TDRBF networks are taken from [12, 13].

5. Summary

� We can use colour/motion cues to effectively segment
and track human heads in image sequences.

� An attentional frame can be extracted relative to the
head position and size to allow the real-time recogni-
tion of hand gestures through time.

� By extracting colour/motion regions from the overall
image, the face detection task is greatly simplified.

� A face detection network can be used to give a qualita-
tive estimate of head-pose for predictive control using
implicit behaviour.

� Splitting multi-phasic gestures into separate phase
classes not only gives more precise timing of gesture
events, but also allows the gesture recognition network
to provide prediction hypotheses for behaviour control.

We have fully integrated real-time recognition, tracking
and on-line intentional control for single users, but there
are still some outstanding problems for multiple interact-
ing users. We can control attentional switching for mul-
tiple users in known scenarios, e.g. 3 people sitting and
passing control in an orderly fashion [22]. A major issue
with this kind of example-based learning approach to multi-
participant behaviour interpretation is the feasibility of col-
lecting sufficient data. The multiplicity of possible events
increases exponentially with the addition of extra partic-
ipants and the combinatorics can only be captured at the
level of examples used for training. The use of high-level
models such as Bayesian Belief Networks(BBNs) can pro-
vide a combination of hand-coded a priori information with
machine learning to ease training set requirements. This is
because the BBNs model the decomposition of the problem
and it is the model parameters (conditional probabilities)
that are learnt so that higher level inferences can be made
from low level visual evidence (see, for example, [6]).

6. Conclusions and Further Research

It is clear that there are many potential advantages of
Visually Mediated Interaction with computers over tradi-
tional keyboard/mouse interfaces. For example, removing



system-dependant IT training and allowing the user a more
intuitive form of system direction. However, there are still
many challenges for integrating multi-user interaction anal-
ysis and control due to the ambiguities and combinatorial
explosion of possible behavioural interactions. We have
demonstrated how our connectionist techniques can support
real-time interaction by detecting faces and capturing ‘at-
tentional frames’ to focus processing. To go further we will
have to build our VMI systems around the task demands
which include both the limitations of our techniques and
potentially conflicting intentions from users. Connectionist
techniques are generally well suited to this kind of situa-
tion as they can learn adaptive mappings and have inherent
constraint satisfaction.

Further research is taking two main directions: 1) the
development of gesture-based control of animated software
agents in the EU Puppet project; and 2) the development of
context-based control in more complex scenarios in the new
EU ActIPret project. The first extends the use of action se-
lection and dynamic control functions in gesture-based in-
terfaces where pointing can indicate the current avatar and
movement patterns can control animation parameters. The
second involves recognition of complex behaviours and ac-
tivities that consist of a sequence of events that evolve over
time [10]. As yet there has been little work that combines
automated learning of behaviours in different contexts. In
other words, it is usually only simple, generic models of be-
haviour that have been learnt rather than learning when and
how to apply more complex models in a context sensitive
manner.

Acknowledgements

The authors gratefully acknowledge the invaluable dis-
cussion, help and facilities provided by Shaogang Gong,
Jamie Sherrah and Stephen McKenna and funding under the
EPSRC ISCANIT and EU ActIPret projects.

References

[1] A. Bobick and A. Wilson. A state-based technique for the
summarization and recognition of gesture. In Proc. ICCV,
pp. 382–388, Cambridge, MA, 1996.

[2] A. F. Bobick. Movement, activity, and action: The role of
knowledge in the perception of motion. Proc. Royal Society
London, Series B, 352:1257–1265, 1997.

[3] M. Brand, N. Oliver, and A. Pentland. Coupled hidden
Markov models for complex action recognition. In Proc.
ICPR, San Juan, Puerto Rico, 1997.

[4] R. A. Brooks. From earwigs to humans. Robotics and Au-
tonomous Systems, 20:291–304, 1997.

[5] V. Bruce and P. Green. Visual Perception. Lawrence Erl-
baum, London, 1990.

[6] H. Buxton and S. Gong. Visual surveillance in a dynamic
and uncertain world. Artificial Intelligence, 78:431–459,
1995.

[7] R. Cutler and M. Turk. View-based interpretation of real-
time optical flow for gesture recognition. In Proc. FG, pp.
416–421, Nara, Japan, 1998.

[8] S. Duvdevani-Bar, S. Edelman, A. J. Howell, and H. Bux-
ton. A similarity-based method for the generalization of face
recognition over pose and expression. In Proc. FG, pp. 118–
123, Nara, Japan, 1998.

[9] A. Galata, N. Johnson, and D. C. Hogg. Learning variable
length Markov models of behaviour. Computer Vision &
Image Understanding, 81:398–413, 2001.

[10] R. J. Howarth and H. Buxton. Conceptual descriptions from
monitoring and watching image sequences. Image & Vision
Computing, 18:105–135, 2000.

[11] A. J. Howell. Face recognition using RBF networks. In
R. J. Howlett and L. C. Jain, editors, Radial Basis Function
Networks 2, pp. 103–142. Physica-Verlag, 2001.

[12] A. J. Howell and H. Buxton. Learning gestures for visu-
ally mediated interaction. In Proc. BMVC, pp. 508–517,
Southampton, UK, 1998.

[13] A. J. Howell and H. Buxton. Learning identity with radial
basis function networks. Neurocomputing, 20:15–34, 1998.

[14] A. J. Howell and H. Buxton. RBF network methods for face
detection and attentional frames. Neural Processing Letters,
15:1–15, 2002.

[15] M. Isaard and A. Blake. A mixed-state condensation tracker
with automatic model-switching. In Proc. ICCV, pp. 107–
112, Bombay, India, 1998.

[16] A. Jebara and A. Pentland. Action reaction learning: Auto-
matic visual analysis and synthesis of interactive behaviour.
In Proc. ICVS’99, Las Palmas de Gran Canaria, Spain, 1999.

[17] G. Johansson. Visual perception of biological motion and
a model for its analysis. Perception and Psychophysics,
14:201–211, 1973.

[18] N. Johnson, A. Galata, and D. Hogg. The acquisition and use
of interaction behaviour models. In Proc. ICPR, pp. 866–
871, 1998.

[19] N. Oliver, B. Rosario, and A. Pentland. A Bayesian com-
puter vision system for modelling human interactions. In
Proc. ICVS’99, Las Palmas de Gran Canaria, Spain, 1999.

[20] A. Pentland. Smart rooms. Scientific American, 274(4):68–
76, 1996.

[21] C. Pinhanez and A. F. Bobick. Human action detection using
PNF propagation of temporal constraints. In Proc. ICPR,
Santa-Barbara, CA, 1998.

[22] J. Sherrah, S. Gong, A. J. Howell, and H. Buxton. Interpre-
tation of group behaviour in visually mediated interaction.
In Proc. ICPR, pp. 266–269, Barcelona, Spain, 2000.

[23] R. H. Thibadeau. Artificial perception of actions. Cognitive
Science, 10:117–149, 1986.

[24] M. Turk. Visual interaction with lifelike characters. In Proc.
FG, pp. 368–373, Killington, VT, 1996.

[25] A. D. Wilson and A. F. Bobick. Recognition and interpre-
tation of parametric gesture. In Proc. ICCV, pp. 329–336,
Bombay, India, 1998.

[26] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland.
Pfinder: Real-time tracking of the human body. IEEE Trans.
PAMI, 19:780–785, 1997.

[27] C. R. Wren and A. P. Pentland. Dynamic models of human
motion. In Proc. FG, pp. 22–27, Nara, Japan, 1998.


