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Abstract

We are entering an era of more intelligent cognitive vision systems. Such systems can analyse activity in dynamic scenes to compute

conceptual descriptions from motion trajectories of moving people and the objects they interact with. Here we review progress in the

development of flexible, generative models that can explain visual input as a combination of hidden variables and can adapt to new types of

input. Such models are particularly appropriate for the tasks posed by cognitive vision as they incorporate learning as well as having sufficient

structure to represent a general class of problems. In addition, generative models explain all aspects of the input rather than attempting to

ignore irrelevant sources of variation as in exemplar-based learning. Applications of these models in visual interaction for education, smart

rooms and cars, as well as surveillance systems is also briefly reviewed.
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1. Introduction

How can we develop visual intelligence? What are the

basic research issues when we go from live video input to

meaningful behaviour in our vision systems? We know that

the gap cannot be closed by structural computer vision

techniques alone. Such techniques are concerned with direct

space-time aspects of the physical world and reconstruction

of the observed scene. However, we are concerned with

system purpose to integrate our vision modules into

complete intelligent systems, which can understand

observed activities as well as track the objects and people

in the scene. Ballard’s landmark paper [2] proposes that

vision is best understood in the context of the visual

behaviours engaging the system without requiring detailed

internal representations of the scene. His approach also

recognises that it is important to have a system framework

that integrates visual processing within the task context. In

general, it is not necessary to have perfect object

reconstruction before we achieve the visual understanding

required for real-world applications.

What do cognitive vision systems entail? The basic

approaches combine techniques from symbolic or subsym-

bolic AI with computer vision techniques in some way.

Naturally, we then encounter many of the major issues in AI

such as knowledge representation and reasoning, control

and the handling of uncertainty, as well as machine learning.

Much of the work assumes that knowledge drives reasoning

in visual interpretation (seeing as ), thus visual context is

seen as essential for understanding what is depicted in

images or image sequences. If we are to build efficient

systems that can tackle many different tasks, high-level

attention and control (seeing for ) is also seen as essential. In

addition, if we are to incorporate scene and task knowledge,

we have to address the question of how such knowledge can

be acquired. Knowledge structures were traditionally

designed by hand but here we argue for the importance of

automating their construction (learning ) since learnt

models are well suited to on-line analysis.

Learning in a vision system can be at the level of object

models, their movements and actions, and how to control

views and processing in the system. Some kinds of

knowledge can be hand-crafted, for example, explicit

models designed to provide a solution to one particular

application. Such models are necessarily fixed after

construction, with no flexibility to adapt to new kinds of

data. A typical explicit model is given in early work by

Hogg [33] on an articulated cylinder model of a walking

man with spatio-temporal constraints on the movement

patterns. This was advanced research for model-based

vision in 1983, however, such models are slow to match to

the image data and cannot adapt in the on-line system. Even

with more recent work where aspects of the model are

learned from training data [19], the fact that the model is
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explicit means that human intervention is required for

labeling the examples.

An alternative approach has been developed more

recently with exemplar-based models that have an associ-

ated distance metric. For this kind of model, it is necessary

to remove irrelevant variation by preprocessing to derive the

set of exemplars. Typical exemplar-based techniques

include nearest-neighbour methods and Roweis and Saul’s

local linear embedding [76], which yields non-linear

dimensionality reduction in the learnt model. While such

models are fast to match using the distance metric and can

adapt, they are still crucially dependent on choice of

preprocessing for the application. This involves human

intervention in deciding what is irrelevant, thus leaving only

relevant variables or parameters to be learned.

Exciting new work on fully automated learning of

flexible models, such as the partially learnt deformable and

graphical models reviewed here, could be extended.

Although learning of the underlying hidden variables as

well as the data relationships has so far only been applied to

more basic vision tasks such as segmentation, digit

recognition, tracking and ‘sprite’ modeling [25], the

approach is general and could be taken further. Flexible

models have evolved in the machine learning community

and cover a wide class of parametric models for signal

processing, which includes PCA and Gaussian mixtures

(GM) as well as hidden Markov models (HMM) and

Bayesian belief networks (BBN), etc. Here we are interested

in those that are ‘generative’, that is, with probability

distributions, estimated from input data, over a set of hidden

variables. A clear advantage of such models is that some

knowledge of the complexity of the problem, such as

number of dimensions of the hidden space, can be built in.

These generative models can then adapt to the different

types of input required by the application as well as predict

and explain the data.

2. Models: reasoning and learning

Essentially, what is proposed here is that a powerful way

of tackling these issues of learning and inference as well as

the use of context and active task control is to use generative

models. In cognitive vision, there are two highly related

approaches to generative models which have been devel-

oped, deformable and graphical models. These are to a large

extent complementary as deformable models have been

primarily used to represent static and dynamic shape,

texture and other physically observable parameters, while

more general graphical models have been used to capture

more abstract relationships. Both use well-established

statistical learning theory in either off-line or on-line

learning. A unifying review of theory and techniques for

such models from the machine learning perspective is given

in Roweis and Ghahramani [75]. They explain

the relationships between the models and even offer

a generative model for generative models. Table 1 gives

an overview of how the flexible, generative models in this

review can be regarded as extensions of each other, giving

increasing capability at the cost of greater complexity.

The Gaussian is the initial underlying measurement

model in automated learning of more structured generative

models, where variability in the data can be explained (or

predicted) from inferred (hidden) model parameters. HMM

models can be regarded as extending GM models by having

learned dynamic dependencies between states. These have a

chain of simple dependencies on the immediately previous

state. They can be extended to either 1) coupled dependen-

cies with states in another HMM to form a Coupled Hidden

Markov Model (CHMM) or 2) possible longer term

temporal dependencies with previous states in the same

HMM to form a variable length Markov model (VLMM).

PCA models are commonly used to characterise data by a

reduced set of dimensions or model parameters. BBN and

DBN models assume statistical independence plus a

hierarchy of dependencies between the hidden model

variables. We can regard a DBN as an extension of an

HMM with hierarchy or an extension of a BBN with learnt

dynamic dependencies between states of some kind, e.g.

with a simple Markov relationship over time. Adding utility

theory allows decision support for rational agents using

utility nodes and decision nodes for actions to form a

dynamic decision network (DDN) of some kind, although

this extension is usually hand-coded.

PCA is the commonest way of modeling data by using a

linear (Karhunen–Loeve) transformation to find a reduced

number of ‘effective’ features that retain most of the

intrinsic information. That is, we have m-dimensional

vector x and want to model this using l features or

parameters, so we want to find transformation Tx such

that truncation causes as little increase in mean-square error

as possible. This can be achieved by simple Hebbian

learning or a variety of other techniques. The transformation

yields a set of orthogonal eigenvectors, which are the

parameters of interest for the representation. The different

combinations of eigenvalues then represent particular

instances of the parameterised, generative model. In Section

3, the use of these techniques in the deformable models

approach is described, followed in Section 4 by extensions

Table 1

Generative model relationships

Initial Extension Final

Gaussian Mixture GM

Gaussian Reduce dimension PCA

GM Dynamic HMM

HMM Coupling CHMM

HMM Variable length VLMM

HMM Hierarchy DBN

DBN Utility DDN
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to more general reasoning, control and learning for more

complex graphical models.

3. Deformable models

Original work by Terzopoulos [80] pioneered the use of

deformable models in realistic simulations of human heads

using biomechanical facial muscles and skin movements.

This work led to early methods for shape and non-rigid

motion estimation going from synthesis to an interpretive

task [55]. An alternative approach was developed by

Edwards and colleagues, based on work by Cootes and

Taylor [19]. This simply models the appearance of the face

in 2D with parameterised texture variations and 2D

deformations to simulate different expressions and view-

points [22] rather than model the underlying 3D structure.

Such models can provide good graphical representations for

synthesis of appearance and motion, but reversing this for

interpretation is less well understood. However, further

work has shown we can both learn adaptive shape models

for humans and use them in finding likely spatio-temporal

patterns of activity for tracking, as in the early work by

Baumberg and Hogg [4,6]

So what is a deformable model and how is it used in this

visual interpretation work? Physically based vibration

modes are fundamental for the description of such models,

and building in known constraints into the perception

process can allow difficult problems in computer vision to

be solved. The constraints are mainly learned from

observation for visual interpretation, e.g. Baumberg and

Hogg [4]. However, in general, these constraints need not

even be based on real physical properties but just act to

condition the interpretation. For tracking a non-rigid

deformable object, early work by Pentland and Horowitz

[65] showed how to recover motion and structure using

finite element techniques. This method relies on assump-

tions about elasticity and density distribution, with vibration

modes derived via mass and stiffness matrices in the main

equation governing the physical behaviour. Further work by

Nastar [58] used such ‘modal analysis’ in a wider range of

applications. However, it is the combination of acquisition

of these modes of variation by observation and their use in

generative perceptual control that has proved crucial for

more general application in vision.

The use of training in deformable model analysis has

much in common with training in neural networks. Cootes

and Taylor [20], in their early work, introduced the point

distribution model (PDM) which is derived from a set of

characteristic training data for the problem at hand and

parameterised by a set of orthogonal ‘modes of variation’.

The training shapes are then represented by a subset of

vectors which account for the majority of the observed

variations. The PDM has proved extremely useful for image

sequence analysis for tracking contours [4] and locating

structures in medical images [32]. However, there was

originally no intrinsic time dimension and, in early work,

characteristic points for the training sets were selected by

hand. More recent work by Baumberg and Hogg [6]

successfully tackled both these drawbacks and has led to

the development of not only tracking of walking people but

also generalisation of the techniques using probability

density functions (PDFs) on extracted trajectories. These are

used in event analysis (e.g. Johnson and Hogg [45]) and the

full visual interaction modeling we describe below, which

uses extended statistical learning techniques.

3.1. Point distribution model

PDMs are a well-established tool for statistical analysis

of visual data. The PDM is based on a set of example shapes

of a given object (or behaviour pattern if temporal

extension). Traditionally each shape is defined by landmark

points that are selected as important, corresponding to

features of the object (or trajectory). This approach then

allows a class of objects (or behavior patterns) to be

characterised by a small set of parameters. The original

linear PDM [20] was trained on a set of shapes with n

landmark points aligned to the mean shape �x: The distance

from the mean is calculated using PCA to get the vector

d ¼ x 2 �x for the n 2D landmark vectors x ¼

ðx1; y1;…; xn; ynÞ: Next the 2n £ 2n covariance matrix C ¼

Eðd·dTÞ is found, where E is the expectation operator over

the training examples. Eigenvectors of C then correspond to

the variation modes for this data with the largest eigenvalue

describing the most significant mode, etc. The PDM model

is simply the mean shape x; together with the t eigenvectors

p1;…;pt characterising a number of modes of variation

sufficient to describe the training data for the task at hand.

The PDM can be extended to parameterised curves such

as the cubic B-spline [45]. They show that the point

measurements can be mapped to the modes of variation

using b ¼ PTðx 2 �xÞ; where b is a vector of t shape

parameters, x is a vector of 2n positions and P is a matrix

with columns corresponding to eigenvectors of the covari-

ance matrix. Using a set of parameterised shapes for training

the model, represented by n control points, allows the

automated placing of a set of measurements at regular

intervals along a continuous curve. However, in contrast to

landmark points set by hand, any particular measurement

will affect several control points, which violates the

independence assumption implicit in the measurement

model (Gaussian sampling noise with variance r ). The

formal solution to this problem is to use the covariance

matrix R ¼ rH21; obtained using the interpolation function

Hi for the parameter [9]

Hij ¼
ð

HiðuÞHjðuÞdu:

In practice a covariance matrix S is estimated from training

data to obtain 2n eigenshapes using the relationship SH
ei ¼ liei: The eigenvectors ei are made orthonormal to
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the inner product ku; ul ¼ uTHu: The shape vectors are

defined by u ¼
P2n

i¼1 mi þ �u; with coefficient mi ¼ ku 2 �u;

eil: Over the training set these coefficients can then be

shown to be linearly independent and allow analysis similar

to that in the traditional PDM. That is, the coefficients for

each eigenshape mode are updated independently and a

subset t can be used sufficient for the task.

3.2. Tracking objects

Deformable shape models, such as the PDM, are derived

from a set of training data containing representative objects.

The boundary of each segmented object is traced automati-

cally and fitted with a cubic B-spline contour with consistent

control points or fitted with an active ‘snake’ [48]. As we

have seen, using the PDM approach above requires PCA on

the spline data so that a small set of the largest components

characterise the data. This model can be re-parameterised to

make it even more compact for on-line tracking. Kalman

filters can then be used to track objects using position, scale

and orientation of the model in addition to the compact

shape parameters. The iterated Kalman filter is used by

Baumberg [3] to adaptively set these parameters for rapid

convergence in the tracking. Using the ground-plane

constraint allows the 2D height and position parameters to

be mapped into approximate world coordinates. This

approach was developed for deformable car models by

Sullivan and colleagues [79] and brought together for both

humans and cars in a joint project [71]. In the combined

system, cars can stop moving and be incorporated into the

background by using a median filter over time, thus

allowing the detection of moving objects in front of these

stationary vehicles.

3.3. Tracking humans

A promising scheme using PDMs has been mentioned

above and tested for tracking human figures in image

sequences, starting with the early work of Baumberg and

Hogg [5,6]. The flexible 2D prior model of the human

outline shape can be used to recognise and track pedestrians

in dynamic scenes. This uses a learnt model in contrast to

the explicit, hand-built 3D articulated model used in human

tracking by Hogg in 1983 [33]. The deformable shape model

incorporates the observed modes of variation as constraints,

so that tracking becomes less sensitive to partial occlusions

and image noise. This model captures the apparent changes

in shape found in images due to underlying human pose and

deformation variation, as well as relative viewpoint

variation of the walking human with respect to the camera

in the 3D scene. Wren and Pentland have also built

deformable models with a region-based approach in which

moving ‘blobs’ are tracked in real-time, used in their

‘Pfinder’ system [86]. Further work by Wren allows more

detailed analysis of human body movements which

incorporates some real physical constraints due to

the skeletal structure [87]. This is closer to the work using

biomimetic models of Terzopoulos and colleagues cited

above, which incorporates models of the underlying muscle

structure and elasticity.

3.4. Behaviour analysis

The main systems here to illustrate the deformable

models approach are taken from the work of Johnson and

Hogg [45], Morris and Hogg [56] and Galata et al., [27].

Their work emphasises acquisition and encoding of spatial,

temporal and procedural knowledge by passive observation

of video sequences of typical interactions. The basis for the

work is development of spatio-temporal models automati-

cally learned from video training data. The models have no

explicit or hand-crafted element and are usually low

dimensional linear transformations of the image space.

These visual models of interaction have been applied to both

surveillance applications and human computer interaction.

A basic component of these systems is representation of a

given target activity by training a model with the video

sequences depicting repeated examples of this target

activity. The sequences must contain examples that span

the range of ways in which the activity may be carried out

and there will typically need to be hundreds of these

examples. If the activity is on the ground-plane, such as

pedestrians crossing a pathway or carpark, the constructed

models must be sufficiently detailed to evaluate whether the

pedestrian is deviating from the model and to allow

prediction of the immediately following trajectory, up to

some choice-point or junction for example. This kind of

model, then, would be of use in surveillance systems to raise

alarms and provide short-term occlusion handling in

tracking.

3.4.1. Visual tracking

The visual tracker of Baumberg and Hogg [5,6] is used in

analysis of this kind and closely related to the active shape

models of Cootes and Taylor [19] and active contours of

Blake and Isard [10]. A closed B-spline contour is used to

represent the image profile and consists of a set of control

points. There is initial segmentation using image differen-

cing to extract the moving objects for training, then the B-

spline contour is wrapped around each extracted profile so

that the first control point is located in a similar position in

each example for training. The number and spacing of the

control points is also held constant so that variations in

control point location from example to example are due to

observable, intrinsic shape variations. An eigenshape model

then consists of the largest principal components that

account for these variations. For example, about 10–20

components were sufficient for the walking pedestrian, with

the most salient feature being the gap appearing and

disappearing between the legs. Tracking using this kind of

model can provide a set of example trajectories by using a

Kalman filter to constrain the search from frame to frame.
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For example, in Fig. 1 trajectory from such tracking is

shown ready for further processing. For more details see

Johnson and Hogg [45], who demonstrate its use in

assessing the typicality of a given trajectory from the PDF.

3.4.2. Visual interaction

The visual interaction of Morris and Hogg [56] builds on

this work to allow the capability of recognising, for

example, ‘suspicious’ behaviour. Trajectory landmarks are

found using closest approach to the nearest object and the

distribution of speed and distance with respect to these

landmarks, called an ‘event’, is used to characterise the

underlying typical behaviour during the training phase. In

the recognition phase, the probability of a given event is

assessed using simple statistical tests based on observing the

measured speed and distance, where low speed and distance

are associated with suspicious behaviour. That is, moving

quickly down a row of cars is not unusual nor is standing

still a long way off but being both close and near stationary

is noted as atypical (low probability). The trajectories are

first observed as an ordered sequence of events but are re-

sorted in order of increasing probability for assessment. The

last stage requires characterisation of cummulative prob-

ability for the overall trajectory under the expectation that

people get out of their cars and walk to the exit. This value

will usually start with low probability events like getting out

of a car but will change if all other interactions are at a

reasonable speed and distance. However, if atypical

behaviour is taking place, there will be a large number of

low probability events and the cummulative value will

change less. Supervised learning is used to provide the

classification boundary to decide if the overall trajectory

value is ‘atypical’.

3.4.3. Virtual reality

The virtual reality systems of Johnson et al. [46] also

build on this approach to model interaction between people

for applications in human computer interaction. Here a

probabilistic model of the joint behaviours is learned by

observing sets of typical interactions off-line in the training

phase, much as above, but using the ‘eigenshape’ B-spline

profile as the base [5]. The contours of the two interacting

people are then represented by the concatenated set of

control points from the B-spline (third order) contours. This

time the state vector uses separation and height of the left

and right individuals together with the first derivative of

these measures. From the data, a set of prototype states are

again derived by vector quantisation and linked into a

Markov chain to form the behaviour model. As in the

surveillance work, the model can be used in a variety of

ways in the on-line recognition and interpretation phase. For

example, extrapolation forward in time from a tracked

behaviour is obtained probabilistically from the model in

order to generate a set of more or less likely continuations.

The model can also fill in missing parts of the behaviour

interaction using a Bayesian framework in a similar manner

to representing and updating the a posteriori density used in

the tracking algorithm [9]. In general, the set of plausible

state hypotheses can be found from this density function,

where the maximum represents the most likely hypothesis

for the state of the interaction.

The main application of their work is in the synthesis of a

virtual partner and this has been demonstrated for

handshaking and turn-taking in speaker interaction. Further

work in this direction by Galata et al. [27] has developed

this approach with the deformable model combined with a

graphical model, a VLMM. This can be applied to highly

structured behaviour such as dance, aerobics and sign

language. As we see in Section 4 on graphical models, there

are many variants of using an HMM and this approach then

is close to work coupling dynamic models with the Markov

chain representing long-term constraints [66,74]. However,

the extension here uses VLMMs to overcome problems in

the iterative optimisation found in learning standard models,

where there can be local maxima. The flexible models first

encode sequences of about 20 ms and then the higher level

sequences of atomic behaviours of about 1 s.

Fig. 1. Results from tracking using deformable model to show trajectory extracted for further analysis [45].
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4. Graphical models

Probabilistic frameworks have much to offer in dealing

with the pervasive problem of uncertainty in visual

evidence, and allow full information integration as proposed

by Pearl [63]. The representation of constraints in a

Bayesian Belief Network, BBN or ‘Bayes net’, can be

achieved by mapping into a graph structure so that the nodes

represent concepts or parameters of interest and dependen-

cies are given by causal links. Bayes nets can be learned and

model dependencies for either static (BBN) or dynamic

(DBN) domains, as well as incorporate decision theory in

DDN. A simpler chained structure with single causal

dependencies over time, the HMM, is often used for speech

analysis [70] and has been extensively adapted for analysis

of dynamic scenes and perceptual control as described

below. In probabilistic reasoning [17], the likelihood of

classes of objects or events is inferred by propagation of

belief values in the light of changing evidence. Early work

incorporating Bayes nets was developed by Levitt and

Binford [50,51] to make model-based vision reliable, while

remaining computationally tractable.

Bayes nets have been widely adopted in vision systems

as they are applicable to all levels of processing, due to fast

numerical updating in singly connected trees. There are

techniques to decompose complex models and handle

networks with multiple causes as well as learn the

parameters for such networks [77]. Rimey and Brown

introduced such techniques for active vision, with both

control of camera movement and the selective processing

required in task-based perceptual control [72,73]. As

discussed by Gong and Buxton [30], Bayes nets provide a

clear way to map contextual constraints from the scene onto

the computation of the visual interpretation by combining

known causal dependencies with estimated statistical

knowledge. They are essentially providing closed-loop

control using both top-down and bottom-up messages in

the propagation of belief values. They also provide the

possibility of learning and refining visual representations by

observation [14,85]. Bayes nets have been used in many

demanding applications such as BATmobile [24] and TEA

system [73].

HMMs are also widely used in visual processing, as seen

in the review of recent work on behaviour analysis below.

The advantage here is that the ‘hidden’ purposes of regular

behaviour patterns can be learned from examples, i.e. the

structure of the model as well as the parameters are easily

learned using the Baum-Welch (or EM) algorithm [70]. For

more general Bayes nets, the dependency structure may be

unknown, which complicates the learning process [31] but it

can be solved by using ‘structural’ EM with local search in

the M step [26]. Conditional probability learning for the

state transitions in HMMs is straightforward, for example,

in early work by Gong [28,29] the movement patterns of

vehicles on an airport ground-plane were learned and

provided a generative model used in prediction. More recent

work uses coupled CHMMs to learn models for interactions

[13], parameterised HMMs for gesture interpretation [12],

and variable length VLMMs for virtual reality systems [27].

4.1. Belief propagation

BBN are directed acyclic graphs (DAG) in which each

node represents an uncertain quantity using variables with

multiple possible values. The arcs connecting the nodes

signify the direct causal influences between the linked

variables, with the strengths of such influences quantified by

associated conditional probabilities. If we assume a variable

in the network is Xi; and a selection of variables PXi
are the

direct causes of Xi; the strengths of these direct influences

are quantified by assigning the variable Xi a link matrix

consisting of the values PðxilPXi
Þ; given any combination of

instantiations of the parent set PXi
: The conjunction of all

the local link matrices of variables Xi in the network (for

1 # i # n where n is the total number of the variables)

specifies a complete and consistent global model which

provides answers to all the probabilistic queries. Such a

conjunction is given by the overall joint distribution

function over the variables X1;…;Xn

Pðx1; x2;…; xnÞ ¼
Yn

i¼1

PðxilPXi
Þ;

where lower case symbols stand for a particular instantiation

of the corresponding variables.

In a belief network, if we quantify the degree of

coherence between the expectations (X) and the evidence

(e) by a measure of local belief BELðxÞ ¼ PðxleÞ; and define

belief commitments as the tentative acceptance of a subset

of hypotheses that together constitute a most satisfactory

explanation of the evidence at hand. Then, Bayesian belief

revision amounts to the updating of belief commitments by

distributed local message passing operations. Instead of

associating a belief measure with each individual hypothesis

locally, belief revision identifies a composite set of

hypotheses that best explains the evidence. We call such a

set the most-probable-explanation (MPE). In computational

terms, this means finding the most probable instantiations of

all hypothetical variables given the observation.

Let W stand for the set of all the variables concerned,

inclusive of those in e. Any particular instantiation of

variables in W that is also consistent with e will be regarded

as an extension or explanation of e: The problem then is to

find an extension wp that maximises the conditional

probability PðwleÞ: In other words, W ¼ wp is the MPE of

the evidence if PðwpleÞ ¼ maxw PðwleÞ: Here, wp is

obtained by (1) locally computing the belief function for

each variable X mentioned above, i.e.

BELpðxÞ ¼ max
w0

X

Pðx;w0
X leÞ

where w0
X ¼ w=x; i.e. the set w0

X is equal to the set w minus

the element x; (2) propagating local messages, where these
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are defined as: if X has n parents U1;U2;…;Un and m

children Y1; Y2;…; Ym; then node X receives messages

pp
XðuiÞ; i ¼ 1;…; n from its parents and lpYj

ðxÞ; j ¼ 1;…;m

from its children, where: pp
XðuiÞ is the probability of the

most probable tail-extension of the hypothetical value Ui ¼

ui relative to the link Ui ! X and is known as an

explanation, lpYj
ðxÞ is the conditional probability of the

most probable head-extension of the hypothetical value X ¼

x relative to the link X ! Yj; known as a forecast.

4.2. Tracking objects

Blake and Isard learn to track visual contours for general

applications [10], without using a graphical model but with

the possibility of building constraints into the prior term to

influence interpretation. However, it can be argued that for

application-specific tracking, there should be modeling of

dependencies and explicit association of entities over time

[59]. More recently, Black and Fleet [8] have developed a

full generative Bayesian framework for tracking motion

boundaries. Buxton and Gong [14] have developed a

systematic methodology for the design and integration of

advanced vision systems using Bayes nets. These networks

allow dynamic updating of values in evidence and

interpretation nodes, but not specification of the temporal

constraints themselves. Howarth and Buxton, as discussed

below, used dynamically reconfigured nets to model

evolving spatial relationships of vehicles as they move

through the scene before using a standard ‘tasknet’ BBN in

the behaviour evaluation. The usual approach is to use map-

like knowledge of the environment to develop expectations

of likely object motion, as in Buxton and Gong [30], for the

segmentation and tracking of vehicles. For example, in

Fig. 2 top node of the graph is image grid position which

causally affects two daughter nodes coding orientation and

size of the vehicle. These, in turn causally affect the

observed flow vector features to be grouped under these

contextual constraints for tracking. Others [24] have

adopted dynamic probabilistic networks [21], which make

use of the simple Markov property that the future is

independent of the past given the present state.

4.3. Tracking humans

Isard and Blake have continued to develop general

approaches to tracking that are well-suited to tracking fast

human movement where it is particularly important to keep

multiple likely explanations of motion patterns [41,42].

Conditional expectation maximisation (CEM) and con-

ditional density estimation, ‘condensation’, trackers have

their roots in recursive filtering and control theory and fit in

very well with a probabilistic approach to full behaviour

analysis. They provide a framework for representing density

as a set of samples drawn from the underlying distribution in

a Bayesian manner. The main difficulty is that these trackers

must maintain a large number of samples, e.g. 15,000 to

track a hand while drawing, in order to fully represent the

underlying density. Recent developments by Hogg and

colleagues (in Section 6) can improve on this using more

knowledge in the form of contour models. In general,

we should note that where the shape and dynamics are

known, they can be modeled to simplify tracking, for

example Wren [87].

4.4. Behaviour analysis

Some of the recent work using graphical models in

behaviour analysis has been mentioned above. For example,

support of spatial and temporal reasoning to generate

dynamic scene descriptions [16], which uses hand-coded

Bayes nets. Bayesian systems can also be used for

intelligent vehicle control as in the BATmobile [24] or

recent work by Oliver and Pentland [60]. We have also

briefly introduced the coupled HMMs of Brand and

colleagues [13] for understanding behaviour interactions,

although this approach requires a great deal of training data.

This is also true of parameterised HMMs [12], which can

suffer from lack of stability in the interpretation compared to

deformable model tracking and analysis seen in the last

section. More recent work by Oliver, Rosario and Pentland

[61,62] has developed reliable Bayesian vision systems.

Two exciting recent developments are: (1) work by Galata,

Johnson and Hogg using deformable models with HMM

behaviour models for virtual actors [27] and (2) the action

reaction learning of Jebara and Pentland [43,44], which

models interactions and exploits new ideas from support

vector machines (SVMs) in conjunction with generative

Bayesian theory.

4.4.1. Visual representation

The main system we look at in some detail here, as an

exemplar of graphical models, is the HIVIS-watcher system

[38,40]. When reasoning about the behaviour of dynamic

objects, it is useful if the representation of the properties

related to each object are described in a local relative

coordinate system. This involves recognising each moving

object so that an ‘intrinsic-front’, such as the leading edge of

a car, can be identified together with its spatial extent for
Fig. 2. Belief network that captures dependent relationships for motion

segmentation and tracking [30].
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attentive processing. In a surveillance system we can obtain

the poses of the scene objects via model-matching, making

local reasoning attractive. The local-form is representation

and reasoning that uses the intrinsic frame-of-reference of a

perceived object. The global-form is representation and

reasoning that uses the perceiver’s frame-of-reference,

which operates over the whole field-of-view. In active

surveillance where we are inherently concerned with the

‘here-and-now’, it is important to form a consistent, task

relevant interpretation of the observed behaviour. The

system achieves this by task-level control policies that use

typical-object behaviour models to specify both the

preattentive (global) and attentive (local) processing to be

performed in watching for evolving behaviour interactions.

In particular, ‘deictic’ relationships, relative to their

intrinsic frames of reference, are used to describe evolving

contexts for observer and scene objects [15]. In this situated

approach, it is not necessary to name and describe every

object, but register only those relevant to the task so that the

information registered is proportional to properties of

interest rather than everything derivable in the dynamic

scene.

4.4.2. Visual control

In HIVIS-watcher, there are three separate elements: the

‘virtual-world’ which holds data about the world, the

‘peripheral-system’ with operators that access the world,

and the ‘central-system’ which controls system behaviour.

The peripheral-system is based on Ullman’s [84] visual

routine processor, with reactive planning following the

approach of Agre and Chapman [1] using spatial indexes

[68]. Event detection operators are only run when selected

by the task-level control system in this kind of situated

vision approach [69]. The operators in the peripheral-system

are separated into preattentive ones that are global,

simple, and of low-cost and attentive ones which are

applied to a single object and are more complex. The

preattentive operators are used to guide application of

attentive ones [37,38].

Bayes nets are the main mechanism used to update the

context for interpretation of the dynamic scene at the

behaviour level. This framework allows knowledge rep-

resentation (symbolic and probabilistic) as well as playing a

role in the on-line control of visual processing. For example,

gross-change-in-motion is the preattentive cue to watch for

in analysis of dynamic ‘giveway’ behaviour and to start

gathering detailed evidence for the Bayesian tasknet.

Similarly, mutual-proximity is the cue for ‘overtaking’ or

‘following’ so these are treated as starting the attentive

processing of evidence gathering when these are the active

policy. Evidence in this system is in terms of deictic

relationships such as ‘ref-obj3 is moving faster than ref-

obj2’, which help confirm or reject decisions about the

relevant behaviour. Prior probabilities are not very relevant

in such decision-making but statistical knowledge is learned

as conditional probabilities for the dynamic relationships.

However, how likely the different classes are a priori is

relevant at the movement level [30] to initialise interpret-

ation. All Bayes nets are updated using both parent to child

(expectation) and child to parent (evidence) to give

maximum likelihood explanation a posteriori. The com-

plete dynamic updating cycle plays a role in controlling

evidence collection as nodes can be parameters that affect

the perceptual processing. For example, in Fig. 3 the same

data is processed in different ways depending on the control

policy coded in a DDN.

4.4.3. Visual learning

The learning above is off-line but is exploited on-line in

the HIVIS system. So far, the processing is structured by

analysis of what was involved in verifying that some

behaviour is taking place, both what should be attended (via

the preattentive cues and attentional markers) and how the

reasoning should be structured using typical object

behaviour models. However, this hand-coding is very

difficult and involves a lot of empirical evaluation in order

to get an effective processing scheme. Ongoing work learns

the on-line visual cues for behaviours using a mixture of

connectionist and Bayesian learning techniques to develop

open classes of behavioural models. For complex models it

helps to learn the detailed weights using probabilistic neural

networks (PNNs) from an initial DAG structure. New work

by Frey and Jojic [25] on flexible models and learning with

variational methods in the graphical models community [47,

57] is rapidly developing techniques which can be applied to

learn structure as well as parameters for cognitive vision

tasks. For example, Yacoob and Black [88] have developed

modeling and recognition with PCA ‘activity-bases’.

5. Applications

Generative models can be used to advance cognitive

vision for applications in human–computer interaction,

education and tutoring, smart rooms and cars, and

surveillance systems.

Many researchers are developing useful techniques for

the rapidly growing area of multimodal and multimedia

interaction. Turk’s work at Microsoft with visual control of

virtual actors is one example [83], as is Blake’s use of

sophisticated multi-object trackers [52] in hand tracking

[53] and new work by Frey and Jojic on learning flexible

sprites [25]. Another well-known centre for such work is the

MIT Media lab led by Pentland. Some of this research has

been mentioned earlier, especially under the graphical

models section. MIT Media lab is also very active in the

development of education and tutoring systems. For

example, there has been ongoing research on sign language

interpretation by Starner and Pentland [78] using HMMs.

Bobick and others developed the exciting KidsRoom project

while at MIT [11]. This was a perceptually based
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environment in which children could interact while playing

in a story-telling scenario.

Smart rooms and intelligent environments are now a

rapidly growing area and a visionary overview of general

issues raised by early research is given by Pentland [64]. A

good example is given by the intelligent studios of Pinhanez

and Bobick [67] who use their approximate world models

and incorporate linguistic information to select vision

routines and control of camera views. Smart cars using

new sensor technology for vehicle control are being

developed in conjunction with traffic monitoring in

intelligent highway systems by Malik and colleagues [7,

54]. Also a SmartCar testbed with learning techniques to

model and recognise driving behaviour has been developed

by Oliver and Pentland [60]. The techniques here are again

exploiting graph-based models, both HMM and CHMMs

for: passing, changing lanes, turning, starting and stopping

with prediction a full second before the manoeuver starts.

This anticipation is essential for control and driver

assistance systems.

A great deal of cognitive vision research has been done in

the field of surveillance, for example early work VIEWS

discussed in Section 4 [18]. Here again there is the need to

integrate vision and language to deliver conceptual

descriptions of the scene, which means that language must

be grounded in vision and there must be a clear ontology for

events, activities and scenarios. For example, recent work

by Nevatia’s group has used a Bayesian approach to develop

multi-agent event recognition [34,35]. In addition, Bayes

nets and dynamic decision nets have been developed for

Fig. 3. Results from HIVIS-watcher [15] showing overtaking policy (left) and giveway policy (right).
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task-based control [36] and many of the reasoning tasks

required in advanced surveillance systems by Buxton et al.

[14,39,40]. These allow ongoing interpretation of the visual

evidence in a control loop to actively direct processing for

tracking or behaviour evaluation and deliver a conceptual

description of the dynamic scene which is relevant to the

surveillance task.

6. Conclusion

To summarise the arguments in the earlier sections, we

are suggesting that generative models are essential in the

design and integration of cognitive vision systems. For the

interpretation of a dynamic scene, these systems not only

track and analyse movements of objects and people in the

scene, but also evaluate their behaviour in the context of the

vision system task. Thus, models are used in both

interpretation and control of the visual processing. In

addition, these models should ideally be learned for the

interpretation and control of cognitive vision tasks to

automate construction and support adaptive processing.

We reviewed work using the deformable models

approach and using statistical learning techniques to extract

the models of typical behaviour at the level of movement

trajectories, events, and more abstract sequences of move-

ment. However, note that all this analysis was in the image

plane and does not involve active visual processing or task

control. There are approaches using fuller biomechanical

models by Terzopoulos and colleagues [81] aimed more at

an artificial life level of modeling for behaviour. These

biomimetic agents can be situated in realistic environments

to develop a software approach to the design of active vision

systems [82]. Nevertheless, integration of cognitive vision

systems involves more than the deformable models, as they

must be combined with some kind of situated vision

framework to allow action, or within a full cognitive vision

framework to allow long-term reasoning and evaluation of

behaviour.

A useful approach to cognitive vision system design with

full information integration is offered by graphical models,

where the representations reflect dynamic dependencies for

interpretation of visual evidence. We reviewed work where

Bayes nets and HMMs are partially structured using

contextual knowledge [30] and detailed parameters learned

for prior and conditional probabilities between the import-

ant concepts in dynamic scene interpretation. Complex

models suffer from the combinatorics of top-down and

bottom-up message passing in on-line evaluation of beliefs

required to compute the most likely explanation of the

visual evidence. However, if singly connected trees of

limited depth are used in a decomposition or simplification

of the problem, they are effective for real-time systems,

incorporating active selection for behaviour interpretation

[38]. The contextual constraints and control of processing in

updating beliefs from evidence in these graphical models is

easily understood. Modeling essential aspects of situated

vision by using deictic markers in conjunction with the

Bayes nets and task-based control [40] is also possible. This

type of approach has all the required characteristics for

cognitive vision: contextual processing and control with

learning capabilities.

Finally, for applications, it seems that there is a need for

interdisciplinary work in cognitive science, HCI and AI

approaches to vision. We have seen how cognitive science

research on deictic descriptions and attentional markers in

situated vision [1,68] has been used in the work of Howarth

and Buxton [15]. This is particularly important for the

generation of conceptual descriptions of dynamic scenes

[40]. We also mentioned the role of active viewpoint control

in cognitive vision systems, which is an important area of

research but not reviewed here [23]. Recent research on

overt attention in natural tasks, such as Land and McLeod’s

study of a cricket batsman trying to hit the ball [49], gives

great insight into perceptual performance for such active

camera systems. Future progress in this area depends on

multi-disciplinary projects that combine such cognitive

studies with learnt generative models to develop effective

cognitive vision systems.
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